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Abstract

Frequent problems in applied research that prevent the application of the classical

Poisson log-linear model for analyzing count data include overdispersion, an excess of

zeros compared to the Poisson distribution, correlated responses, as well as complex

predictor structures comprising nonlinear effects of continuous covariates, interactions

or spatial effects. We propose a general class of Bayesian generalized additive mod-

els for zero-inflated and overdispersed count data within the framework of generalized

additive models for location, scale and shape where semiparametric predictors can be

specified for several parameters of a count data distribution. As special instances, we

consider the zero-inflated Poisson, the negative binomial and the zero-inflated negative

binomial distribution as standard options for applied work. The additive predictor

specifications rely on basis function approximations for the different types of effects in

combination with Gaussian smoothness priors. We develop Bayesian inference based

on Markov chain Monte Carlo simulation techniques where suitable proposal densities

are constructed based on iteratively weighted least squares approximations to the full

conditionals. To ensure practicability of the inference we consider theoretical prop-

erties like the involved question whether the joint posterior is proper. The proposed

approach is evaluated in simulation studies and applied to count data arising from

patent citations and claim frequencies in car insurances. For the comparison of models

with respect to the distribution, we consider quantile residuals as an effective graphical

device and scoring rules that allow to quantify the predictive ability of the models. The

deviance information criterion is used for further model specification.

Key words: iteratively weighted least squares; Markov chain Monte Carlo; penalized

splines; zero-inflated negative binomial; zero-inflated Poisson.
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1 Introduction

For analyzing count data responses with regression models, the log-linear Poisson

model embedded in the exponential family regression framework provided by gener-

alized linear or generalized additive models is still the standard approach. However,

in many applied examples, we face one or several of the following problems:

• An excess of zeros as compared to the number of zeros expected from the cor-

responding Poisson fit. For example, in an application on citations of patents

considered later, there is a large fraction of patents that are never cited and

this fraction seems to be considerably larger than expected with a Poisson dis-

tribution fitted to the data.

• Overdispersion, where the assumption of equal expectation and variance inher-

ent in the Poisson distribution has to be replaced by variances exceeding the

expectation. While it is common practice to introduce a single, scalar overdis-

persion parameter to inflate the expectation [Fahrmeir and Tutz, 2001], more

complex forms of overdispersion where the amount of overdispersion depends

on covariates and varies over the observations are often more adequate.

• A simple linear predictor is not sufficient to capture all covariate effects. For

example, the number of claims arising in car insurance for a policyholder re-

quires both spatial effects to capture the strong underlying spatial correlation

and flexible nonlinear effects to model the effects of age of the car and age

of the policyholder. Further extensions may be required to include complex

interaction effects or random effects in case of grouped or multilevel data.

To overcome these limitations, a number of extended count data regression variants

have been developed. To deal with an excess of zeros, zero-inflated count data re-

gression models assume that the data are generated by a two-stage process where a

binary process decides between observations that are always zero and observations

that will be realized from a usual count data distribution such as the Poisson distri-

bution. As a consequence, zeros can either arise from the binary process or from the

Poisson distribution. In the application on citations of patents, the binary process

distinguishes those patents that are of very little interest and will therefore never be
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cited from those that are relevant and for which the number of citations follows, e.g.,

a Poisson distribution. Both the probability for the binary decision and the Poisson

rate may then be characterized in terms of covariates.

To deal with overdispersion, the negative binomial distribution provides a convenient

framework extending the Poisson distribution by a second parameter determining

the scale of the distribution, see for example Hilbe [2007]. The negative binomial

distribution can also be combined with zero inflation as described in the previous

paragraph, see among others Winkelmann [2008].

For Poisson regression and negative binomial regression with fixed scale parameter and

no overdispersion, generalized additive models as developed in Hastie and Tibshirani

[1990] and popularized by Wood [2006] provide a convenient framework that allows

to overcome the linearity assumptions of generalized linear models when smooth

effects of continuous covariates shall be combined in an additive predictor. Infer-

ence can then be based on optimizing a generalized cross validation criterion [Wood,

2004], a mixed model representation [Ruppert et al., 2003, Fahrmeir et al., 2004,

Wood, 2008] or Markov chain Monte Carlo (MCMC) simulations [Brezger and Lang,

2006, Jullion and Lambert, 2007, Lang et al., 2013]. The framework of gener-

alized additive models for location, scale and shape (GAMLSS) introduced by

Rigby and Stasinopoulos [2005] allows to extend generalized additive models to more

complex response distributions where not only the expectation but multiple param-

eters are related to additive predictors via suitable link functions. In particular,

zero-inflated Poisson and zero-inflated negative binomial responses can be embedded

in this framework where for the former both the probability of excess zeros and the

Poisson rate and for the latter the probability of excess zeros, the expectation of the

count process and the scale parameter are related to regression predictors.

Predictor specifications that go beyond the generalized additive models of

Hastie and Tibshirani [1990] comprising only nonlinear effects of continuous covari-

ates have been developed within the framework of structured additive regression and

allow for arbitrary combinations of parametric linear effects, smooth nonlinear ef-

fects of continuous covariates, interaction effects based on varying coefficient terms or

interaction surfaces, random effects, and spatial effects using either coordinate infor-

mation or regional data [Fahrmeir et al., 2004, Brezger and Lang, 2006]. Structured
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additive regression relies on a unifying representation of all these model terms based

on non-standard basis function specifications in combination with quadratic penalties

(in a frequentist formulation) or Gaussian priors (in a Bayesian approach).

In this paper, we develop Bayesian structured additive regression models for zero-

inflated and overdispersed count data covering the following unique features:

• The approach supports the full flexibility of structured additive regression for

specifying additive predictors for all parameters of the response distribution

including the success probability of the binary process and the scale parameter

of the negative binomial distribution. It therefore considerably extends the set

of available predictor specifications for all parameters involved in zero-inflated

and overdispersed count data regression.

• The model formulation and inference are embedded in the general framework of

GAMLSS which allows us to develop a generic approach for constructing pro-

posal densities in a MCMC simulation algorithm based on iteratively weighted

least squares approximations to the full conditionals as suggested by Gamerman

[1997] or Brezger and Lang [2006] for exponential family regression models. An

alternative strategy would be the consideration of random walk proposals as in

Jullion and Lambert [2007].

• We provide a numerically efficient implementation comprising also an extension

to multilevel structure that is particularly useful in spatial regression specifi-

cations or for models including random effects, see Lang et al. [2013]. This

implementation is part of the free software package BayesX [Belitz et al., 2012].

• Theoretical results on the propriety of the posterior and positive definiteness of

the working weights required in the proposal densities are included.

• Especially compared to frequentist GAMLSS formulations, our approach has

the advantage to include the choice of smoothing parameters directly in the

estimate run and to provide valid confidence intervals which are difficult to

obtain based on asymptotic maximum likelihood theory.

Model choice between different types of zero-inflated and overdispersed count data

models will be approached based on quantile residuals [Dunn and Smyth, 1996] to
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evaluate the fit, the deviance information criterion [Spiegelhalter et al., 2002] and

proper scoring rules [Gneiting and Raftery, 2007] to determine the predictive ability.

Some rare approaches that develop similar types of models and inferences are already

available. For example, Fahrmeir and Osuna Echavarŕıa [2006] develop a Bayesian

approach for zero-inflated count data regression with Poisson or negative binomial

responses but only allow for covariate effects on the expectation of the count data

part of the response distribution and not on the probability of excess zeros or the scale

parameter of the negative binomial distribution. Czado et al. [2007] also develop zero-

inflated generalized Poisson regression models for count data where the overdispersion

and zero-inflation parameters can be fitted by maximum likelihood methods.

There are two packages in R that provide regression for zero-inflated models. In

gamlss [Rigby and Stasinopoulos, 2005] maximum (penalized) likelihood inference is

used to fit models within the GAMLSS framework including the zero-inflated Poisson

and (zero-inflated) negative binomial distribution. A description about the imple-

mentation of GAMLSS in R and data examples are given in Stasinopoulos and Rigby

[2007]. We will evaluate the comparison of the proposed Bayesian approach for

zero-inflated and overdispersed count data with the penalized likelihood approach

in gamlss in extensive simulations in Section 4. Linear predictors can be specified

in the package pscl [Zeileis et al., 2008] to fit zero-inflated regression models. The

parameters are estimated with the function optim to maximize the likelihood.

The rest of this paper is organized as follows: Section 2 describes the model speci-

fication for Bayesian zero-inflated and overdispersed count data regression in detail

including prior specifications. Section 3 develops the corresponding MCMC simu-

lation algorithm based on iteratively weighted least squares proposals and discusses

theoretical results. Section 4 evaluates the performance of the Bayesian approach

compared to the penalized likelihood approach of GAMLSS within a restricted class

of purely additive models and for more complex geoadditive models. Sections 5 and

6 provide analyses of the applications on citations of patents and claim frequencies

in car insurance. The final Section 7 summarizes our findings and comments on

directions of future research.
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2 Zero-Inflated Count Data Regression

2.1 Observation Models

We assume that zero-inflated count data yi as well as covariate information νi have

been collected for individuals i = 1, . . . , n. The conditional distribution of yi given

the covariates ν i is then described in terms of the density

p(yi|νi) = πi1{0}(yi) + (1− πi)p̃(yi|νi)

that arises from the hierarchical definition of the responses yi = κiỹi, where κi is

a binary selection process κi ∼ B(1 − πi) and ỹi follows one of the standard count

data models, ỹi ∼ p̃ such as a Poisson distribution or a negative binomial distribu-

tion. The underlying reasoning is as follows: To model the excess of zeros observed

in zero-inflated count data, the response is zero if ỹi equals zero but additional zeros

arise whenever the indicator variable κi is zero. The amount of extra zeros intro-

duced compared to the standard count data distribution of ỹi is determined by the

probability πi. From the definition of zero-inflated count data models, we obtain

E(yi|νi) = (1− πi) E(ỹi|νi)

Var(yi|νi) = (1− πi) Var(ỹi|νi) + πi(1− πi) (E(ỹi|νi))
2 . (1)

Our focus is on two special cases for the count data part of the distribution, namely

the Poisson distribution ỹi ∼ Po(λi) with density p̃(ỹi) = λỹii e
−λi/ỹi! and the negative

binomial distribution ỹi ∼ NB(δi, δi/(δi + μi)) with density

p̃(ỹi) =
Γ(ỹi + δi)

Γ(ỹi + 1)Γ(δi)

(
δi

δi + μi

)δi ( μi

δi + μi

)ỹi

.

The latter choice is particularly suited if the count data part of the response distri-

bution is overdispersed.

To allow maximum flexibility in the zero-inflated count data regression specifications,

both the parameter for the excess of zeros as well as the parameters of the count data

part of the distribution are related to regression predictors constructed from covariates

via suitable link functions. For zero-inflated Poisson (ZIP) regression, we choose

ηπi = logit(πi) and ηλi = log(λi) whereas for zero-inflated negative binomial (ZINB)

regression we assume ηπi = logit(πi), η
μ
i = log(μi) and η

δ
i = log(δi). Both specifications
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can be embedded in the general class of generalized additive models for location, scale

and shape proposed by Rigby and Stasinopoulos [2005]. Note that in applications we

may often observe that modelling either zero inflation or overdispersion is sufficient to

adequately represent the data generating mechanism. In particular, a large fraction

of observed zeros can also be related to overdispersion and it is therefore not generally

useful to consider the most complex model type for routine applications. In Sections 5

and 6 we will further comment on this issue and will also provide ways of comparing

different models for zero-inflated and overdispersed count data.

2.2 Semiparametric Predictors

For each of the predictors from the previous section, we assume a structured additive

specification

ηi = β0 + f1(νi) + . . .+ fp(νi)

where, for notational simplicity, we drop the parameter index from the predictor and

the included effects. While β0 is an intercept term representing the overall level of

the predictor, the generic functions fj(νi), j = 1, . . . , p, relate to different types of

regression effects combined in an additive fashion. In structured additive regression,

each function is approximated in terms of dj basis functions such that

fj(νi) =

dj∑
k=1

βjkBjk(ν i). (2)

For example, for nonlinear effects of continuous covariates, the basis functions may

be B-spline bases while for spatial effects based on coordinates, the basis functions

may be radial basis functions or kernels. We will give some more details on special

cases later on in this section.

The basis function approximation (2) implies that each vector of function evalu-

ations f j = (fj(ν1), . . . , fj(νn))
′ can be written as Zjβj where Zj is the design

matrix arising from the evaluations of the basis functions, i.e. Zj [i, k] = Bjk(ν i), and

βj = (βj1, . . . , βjdj )
′ is the vector of all regression coefficients. Then the predictor

vector η = (η1, . . . , ηn)
′ can be compactly represented as

η = β01+Z1β1 + . . .+Zpβp (3)

where 1 is an n-dimensional vector of ones.
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2.3 Prior Specifications

To enforce specific smoothness properties of the function estimates arising from the

basis function approximation (2), we consider multivariate Gaussian priors

p(βj) ∝
(

1

τ 2j

) rk(Kj)

2

exp

(
− 1

2τ 2j
β′

jKjβj

)
(4)

for the regression coefficients where τ 2j is the smoothing variance determining our

prior confidence and Kj is the prior precision matrix implementing prior assumptions

about smoothness of the function. Note that Kj may not have full rank and therefore

the Gaussian prior will usually be partially improper. A completely improper prior

is obtained as a special case for either τ 2j → ∞ or Kj = 0.

To obtain a data-driven amount of smoothness, we assign inverse gamma hyperpriors

τ 2j ∼ IG(aj , bj) to smoothing variances with aj = bj = 0.001 as a default option.

2.4 Special Cases

To make the generic model specification introduced in the previous section more

concrete, we compactly summarize some special cases by specifying the basis functions

and the prior precision matrices:

• Linear effects fj(νi) = x′
iβj where xi is a subvector of original covariates:

The design matrix is obtained by stacking the rows xi while usually a non-

informative prior with Kj = 0 is chosen for the regression coefficients βj . A

ridge-type prior with Kj = I is an alternative especially if the dimension of the

vector βj is large.

• P-splines for nonlinear effects fj(ν i) = fj(xi) of a single continuous covariate

xi: The design matrix comprises evaluations of B-spline basis functions defined

upon an equidistant grid of knots and a given degree. The precision matrix

is given by Kj = D′D where D is a difference matrix of appropriate order.

Usual default choices are twenty inner knots, cubic B-splines and second order

differences, see Lang and Brezger [2004] for details.

• Markov random fields fj(νi) = fj(si) for a discrete spatial variable

si ∈ {1, . . . , S}: The design matrix is an indicator matrix connecting individ-
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ual observations with corresponding regions, i.e., Z[i, s] is one if observation i

belongs to region s and zero otherwise. To implement spatial smoothness, Kj

is chosen as an adjacency matrix indicating which regions are neighbors of each

others, see Rue and Held [2005] for details.

• Random effects fj(ν i) = βgi based on a grouping variable gi ∈ {1, . . . , G}: The
design matrix is an indicator matrix connecting individual observations with

corresponding groups, i.e., Z[i, g] is one if observation i belongs to group g and

zero otherwise. To reflect the assumption of i.i.d. random effects, the precision

matrix is chosen as Kj = I.

A more detailed exposition for the generic structured additive regression specifica-

tion comprising also bivariate surfaces or varying coefficient terms is provided in

Fahrmeir et al. [2004] and Kneib et al. [2009].

3 Inference

Our Bayesian approach to zero-inflated and overdispersed count data regression re-

lies on MCMC simulation techniques. For both the ZIP and ZINB model, the full

conditionals for the regression coefficients arising from the basis function expansion

are not analytically accessible due to the complex structure of the likelihoods. The

same remains true for the NB model. One possibility is to develop suitable proposal

densities based on iteratively weighted least squares (IWLS) approximations to the

full conditionals as detailed below. Note that in contrast, the full conditionals for the

smoothing variances τ 2j can be derived in closed form:

τ 2j |· ∼ IG(a′j , b
′
j), a′j =

rk(Kj)

2
+ aj , b′j =

1

2
β′

jKjβj + bj . (5)

3.1 IWLS Proposals

The basic idea of IWLS proposals is to determine a quadratic approximation of the full

conditional that leads to a Gaussian proposal density with expectation and covariance

matrix corresponding to the mode and the curvature of the quadratic approximation.

To make the description easier, we assume for the moment a model with only one

predictor η but the principle idea immediately carries over to our multi-predictor
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framework since in the MCMC algorithm we are always only working with sub-blocks

of coefficients corresponding to one predictor component. Let now l(η) be the log-

likelihood depending on the predictor η. Then it is easy to verify that the full

conditional for a typical parameter block βj is

log(p(βj|·)) ∝ l(η)− 1

2τ 2j
β′

jKjβj

where ∝ is abused to denote equality up to additive constants. The quadratic approx-

imation to this penalized log-likelihood term is then obtained by a Taylor expansion

around the mode such that

∂l(t)

∂ηi
− ∂2l(t)

∂η2i
·
(
η
(t+1)
i − η

(t)
i

)
= 0

where t indexes the iterations of a Newtons’s method type approximation. From this

approximation, we can deduce the working model

z(t) ∼ N

(
η(t),

(
W (t)

)−1
)

where z = η + W−1v is a vector of working observations with the predictor of the

given model as expectation, v = ∂l/∂η is the score vector and W are working weight

matrices based on a Fisher-scoring approximation, with wi = E(−∂2l/∂η2i ), on the

diagonals and zero otherwise. Finally, we obtain that the IWLS proposal distribution

for βj is N(μj,P
−1
j ) with expectation and precision matrix

μj = P−1
j Z ′

jW (z − η−j) P j = Z ′
jWZj +

1

τ 2j
Kj, (6)

where η−j = η −Zjβj is the predictor without the j-th component.

To be able to apply the IWLS proposals in the context of zero-inflated count data

regression, we now have to derive the required quantities, namely the score vector v

and the working weights W . For the ZIP model, the elements of the score vectors

for the zero-inflation and the Poisson parts of the model are given by

vλi =
πiλi

πi + (1− πi) exp(−λi)1{0}(yi) + (yi − λi)

vπi =
πi

πi + (1− πi) exp(−λi)1{0}(yi)− πi

and the working weights can be shown to be

wλ
i =

λi(1− πi) (πi + (1− πi) exp(−λi)− exp(−λi)λiπi)
πi + (1− πi) exp(−λi) (7)

wπ
i =

π2
i (1− πi) (1− exp(−λi))
πi + (1− πi) exp(−λi) (8)
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For the ZINB model, we obtain

vμi =
πiδiμi(

πi + (1− πi)
(

δi
δi+μi

)δi)
(μi + δi)

1{0}(yi) +
yiδi − δiμi

δi + μi

vπi =
πi

πi + (1− πi)
(

δi
δi+μi

)δi1{0}(yi)− πi

vδi = −
δiπi

(
log
(

δi
δi+μi

)
+ μi

δi+μi

)
πi + (1− πi)

(
δi

δi+μi

)δi 1{0}(yi) + δi

(
log

(
δi

μi + δi

)
+
μi − yi
δi + μi

)

+δi (ψ(yi + δi)− ψ(δi))

where ψ(x) = d
dx

log(Γ(x)) is the digamma function for x > 0, and

wμ
i =

δiμi (1− πi)

(δi + μi)
−

πi(1− πi)δ
2
i μ

2
i

(
δi

δi+μi

)δi
(
πi + (1− πi)

(
δi

δi+μi

)δi)
(δi + μi)

2

(9)

wπ
i =

π2
i (1− πi)

(
1−

(
δi

δi+μi

)δi)

πi + (1− πi)
(

δi
δi+μi

)δi (10)

wδ
i = −δi(1− πi)

(
log

(
δi

δi + μi

)
+

μi

δi + μi

)
− δi (E(ψ(yi + δi))− ψ(δi)) (11)

−
(1− πi)πiδ

2
i

(
δi

δi+μi

)δi (
log
(

δi
δi+μi

)
+ μi

δi+μi

)2
πi + (1− πi)

(
δi

δi+μi

)δi − δ2i (E(ψ1(yi + δi))− ψ1(δi))

where ψ1(x) =
d2

dxdx′ log(Γ(x)) is the trigamma function for x > 0. In order to compute

the expectations of the digamma and trigamma functions contained in W δ, we do

the following approximations:

E (ψ(yi + δi)) ≈
m∑

k=0

ψ(k + δi)p(k)

E (ψ1(yi + δi)) ≈
m∑

k=0

ψ1(k + δi)p(k),

where we choose m such that it is lower than or equal to the largest observed count

and the cumulative sum
∑

k p(k) of probabilities is above a certain threshold (our

default is 0.999). Unfortunately, the computing time is considerably dominated by

the evaluation of the expectations above. A trick that proved to work quite well in

practice is to compute the quantity

−δi (E(ψ(yi + δi))− ψ(δi))− δ2i (E(ψ1(yi + δi))− ψ1(δi)) (12)
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only within the initialization period for computing starting values (see Section 3.2

below). After that period, we keep expression (12) fixed during MCMC iterations.

This procedure reduces computing time at least by two thirds while high acceptance

rates and good mixing properties are preserved.

The required quantities in the NB model can directly be obtained from the score

vectors and working weights of the ZINB distribution with π = 0.

3.2 Metropolis-Hastings Algorithm for Zero-Inflated Count

Data Regression

The resulting MCMC algorithm can now be compactly summarized as follows:

1. Initialization: Let T be the number of iterations. Set t = 0 and determine

suitable starting values for all unknown parameters (for example utilizing the

backfitting algorithm described in Section A).

2. Loop over the iterations t = 1, . . . , T , the predictors of a given model and the

components of the predictor.

(a) Compute the working observations z(t) = η(t) +
(
W (t)

)−1

v(t) based on

the current values.

(b) Update βj : Generate a proposal βp
j from the density q(β

(t)
j ,β

p
j) =

N

(
μ

(t)
j ,
(
P

(t)
j

)−1
)

with expectation μj and precision matrix P j given

in (6), and accept the proposal with probability

α
(
β

(t)
j ,β

p
j

)
= min

{
p(βp

j |·)q(βp
j ,β

(t)
j )

p(β
(t)
j |·)q(β(t)

j ,β
p
j )
, 1

}
.

To solve the identifiability problem inherent to additive models, the sam-

pled effect is corrected according to Algorithm 2.6 in Rue and Held [2005]

such that Aβj = 0 holds, with an appropriate matrix A, such as

A = 1′Zj .

(c) Update of τ 2j : Generate the new state from the inverse Gamma distribution

IG
(
a′j , (b

′
j)

(t)
)
with a′j and b

′
j given in (5).
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By construction, the acceptance rates of the smoothing variances are 100% as the

generation of random numbers is realized by a Gibbs-sampler. During several simu-

lations and in the applications we observed acceptance rates between 70% and 90%

for linear and nonlinear effects. In cases with high-dimensional parameter vectors

such as in spatial effects acceptance rates might be lower than 30%. An extension to

multilevel structure can cover this problem and is explained in the following section.

3.3 Multilevel Framework

Recently, Lang et al. [2013] proposed a multilevel version of structured additive re-

gression models where it is assumed that the regression coefficients βj of a term fj in

(3) may themselves obey a regression model with structured additive predictor, i.e.

βj = ηj + εj = Zj1βj1 + . . .+Zjpjβjpj
+ εj . (13)

Here the terms Zj1βj1, . . . ,Zjpjβjpj correspond to additional nonlinear functions

fj1, . . . , fjpj and εj ∼ N(0, τ 2j I) is a vector of i.i.d Gaussian random effects. A

typical application are multilevel data where a hierarchy of units or clusters grouped at

different levels is given. For the purpose of this paper, a particularly useful application

are models with spatial effects. In this case, covariate zj ∈ {1, . . . , S} is a spatial index
and zij = si indicates the district observation i pertains to. Then the design matrix

Zj is an n × S indicator matrix with Zj [i, s] = 1 if the i-th observation belongs to

district s and zero otherwise. The S×1 parameter vector βj is the vector of regression

parameters, i.e. the s-th element in βj corresponds to the regression coefficient of the

s-th district. Using the compound prior (13), we obtain an additive decomposition of

the district-specific spatial effect. If no further, district-specific covariate information

is available, we use the specific compound prior

βj = Zj1βj1 + εj = Iβj1 + εj

where Zj1βj1 = Iβj1 is a structured spatial effect modeled by a Markov random

field prior whereas εj ∼ N(0, τ 2j I) can be regarded as an additional unstructured

i.i.d. random effect. The great advantage of the multilevel approach is that the full

conditionals of the Markov random field become Gaussian making IWLS proposals

unnecessary. Hence, problems with too low acceptance rates in applications with a
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large number of spatial units can be avoided. Another important advantage is the

reduction in computing time as the “number of observations” relevant for updating

the second level regression coefficients βj1 reduces to the number of districts which

is typically much less than the actual number of observations. For instance in the

insurance data set we have 162,548 observations but only 589 districts. The paper

by Lang et al. [2013] also proposes highly efficient updating of the remaining terms

in the level one equation (3) by utilizing the fact that for most covariates the number

of different observations is far less than the actual number of observations. Although

details are beyond the scope of this paper, we point out that our software is fully

capable of the multilevel framework outlined in Lang et al. [2013] and makes use of

the numerical efficient updating schemes described therein.

3.4 Theoretical Results & Numerical Details

Propriety of the posterior

Since our model specification includes several partially improper normal priors, a nat-

ural question is whether the resulting posterior is actually proper. For exponential

family regression with similar predictor types, this question has been investigated for

example in Fahrmeir and Kneib [2009] or Sun et al. [2001] and we will now generalize

these results to the GAMLSS framework. Assume therefore conditionally indepen-

dent observations yi, i = 1, . . . , n, and density fi(yi) belonging to an m-parametric

distribution family with parameters θ1, . . . , θm such that the first and second deriva-

tive of the log-likelihood exist. Let ηθ1 , . . . ,ηθm be the predictors linked to the m

parameters of the underlying distribution. For each predictor, equation (2) allows us

to write η =
∑p

j=1Zjβj with appropriate design matrices Zj and regression vectors

βj . The basic idea to get sufficient conditions for the propriety of the posterior is

to rewrite this model in a mixed model representation with i.i.d. individual specific

random effects where we explicitly differ between effects with proper and (partially)

improper priors. This allows us to adapt the sufficient conditions for the propriety of

the posterior derived in Fahrmeir and Kneib [2009], yielding the following theorem:

Theorem 3.1. Consider a structured additive regression model within the GAMLSS

framework and predictors (2). Assume that conditions 1.–6. specified in Section C
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hold and assume that for j = 1, . . . , p and l = 1, . . . , m either aθlj < bθlj = 0 or

bθlj > 0 hold, where aθlj , b
θl
j are the parameters of the inverse gamma prior for (τ 2)

θl.

If the residual sum of squares defined in (C.6) for the predictors in the normalized

submodel (C.5) is greater than −2bθl0 , then the joint posterior is proper.

A proof for the theorem is contained in Section C. The technical conditions 1. – 6.

given there can be very briefly summarized as the requirement that the sample size

should not be too small compared to the total rank deficiency in the Gaussian priors.

Compared to the usual exponential family case, the conditions on rank deficiencies

have to apply separately for each predictor in the model so that the total requirements

are in general stronger that in the generalized additive model case.

Regularity of the posterior precision matrix

Concerning the IWLS proposals, a requirement is that the covariance matrix of the

approximating Gaussian proposal density is positive definite and therefore invertible.

This is ensured if the working weights are all positive. Given full column rank of

the design matrix, positivity of the weights is always given for zero-inflated Poisson

models as shown in Section B.2. For zero-inflated negative binomial models, the

weights involved in the updates for π and μ are always positive (see again Section B.2)

while this is not necessarily the case for the weights related to δ. Note, however, that

this is not too problematic since positive weights are a sufficient but not necessary

condition for the precision matrix to be invertible. Moreover, we empirically observed

that negative weights only occur rarely and in extreme parameter constellations. If

a computed weight is exceptionally negative we set it to a small positive value in our

implementation to avoid rank deficient precision matrices.

Implementation

The Bayesian zero-inflated and overdispersed count data approach developed in this

paper is implemented in the free, open source software package BayesX [Belitz et al.,

2012]. The implementation makes routine use of efficient storing even for large data

sets and sparse matrix algorithms for sampling from multivariate Gaussian distri-

butions, see Lang et al. [2013] for details. The implementation in this framework
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also has the advantage that the multilevel framework briefly outlined in Section 3.3

becomes accessible for zero-inflated and overdispersed count data regression.

To compute starting values for the MCMC algorithm that ensure rapid conver-

gence towards the stationary distribution, we make use of a backfitting algorithm

[Hastie and Tibshirani, 1990] with fixed smoothing parameters. The idea of the al-

gorithm is to approximate the mode of the log-likelihood function and is part of the

procedure in BayesX, see Section A for further details.

A challenge when working with count data models is the numerical stability of the

software. Suppose for instance that we estimate a (possibly complex) ZIP regression

whereas the true model is a simple Poisson regression without zero-inflation. Then

π is actually zero and the estimated predictor ηπ corresponding to π will tend to be

rather small such that a software crash (e.g. due to overflow errors) is very likely.

The problems become even worse for the ZINB model. We therefore included in our

software a “save estimate” option that prevents a software crash due to numerical

instability. This is obtained by updating a vector of regression parameters, βj say,

only if the proposed new state βp
j of the Markov chain ensures that the predictor

vector is within a certain prespecified range (e.g. −10 ≤ ηπ ≤ 10). Otherwise the

current state of the chain is kept. In the majority of applications, a predictor outside

limits will occur only in a very view number of iterations. If it occurs frequently, then

of course the estimated results are not fully valid but rather an indicator that the

specified model is too complex for the data at hand.

4 Simulations

This section has two central and simulation based aims to show empirically the

performance of the two proposed theoretical models: First, we compare Bayesian

inference in additive models with maximum likelihood estimates where the former

one is realized in BayesX and for the latter one we use the gamlss package in R

[Stasinopoulos and Rigby, 2007]. Note, that for the ZINB model we observed conver-

gence problems of the Newton-Raphson/Fisher-scoring algorithm build in the gamlss

package for about 10% of the simulation replications despite several trials with differ-

ent hyperparameter settings for the function pb that is used to determine smoothing
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parameters in gamlss. We also tried the ga function within the gamlss.add package

for our simulated data which caused even more convergence problems than with the

gamlss package. Section 4.1 is therefore organized as follows: First, we present results

of the ZIP model for both methods and proceed then in presenting the outcomes of

our Bayesian approach in the ZINB model. In the course of this section, frequentist

estimates based on the gamlss package will be denoted by ML.

In Section 4.2 we look at more complex models that allow to capture unobserved

heterogeneity and spatial correlations. The simulation studies presented in Section 4.1

are extended by a spatial effect comprising a structured part based on regions in

Germany and modeled by a Markov random field and an unstructured part simulated

by a random effect. Although the gamlss.add package also provides a possibility to fit

models comprising spatial effects based on Markov random fields, it does not support

the hierarchical model specification we employed in the simulations. All corresponding

studies for the negative binomial distribution can be found in Section E.1.

4.1 Additive Models

In order to compare the ZIP model based on inference described in Section 3 with

the frequentist version by Stasinopoulos and Rigby [2007] and to show that the ZINB

model can be estimated reliably in the Bayesian framework, we consider the functions

fλ
1 (x1) = fμ

1 (x1) = log(x1), fλ
2 (x2) = fμ

2 (x2) = 0.3x2 cos(x2)

fπ
1 (x1) = sin(x1), fπ

2 (x2) = −0.2x2
2

f δ
1 (x1) = 0.1 exp(0.5x1), f δ

2 (x2) = −0.5 arcsinh(x2),

depending on which of the two models is considered. Each of the predictors introduced

in Section 2.1 is written as the sum of two nonlinear functions f1 and f2 where the

covariates x1 and x2 are obtained as i.i.d. samples from equidistant grids of step

size 0.01, such that for i = 1, . . . , n, we have xi1 ∈ [1, 6] and xi2 ∈ [−3, 3]. We use

the sample size n = 1, 000 and simulate 250 replications. An averaged amount of

about 50% and 46% of zeros is observed in the generated samples for ZIP and ZINB,

respectively. For MCMC inference, posterior mean and quantiles can be computed

for each replication using the samples obtained in the MCMC iterations. From the
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simulation runs, we also obtain overall empirical bias and MSE for the estimates

of all functions as well as pointwise coverage rates. In addition, BayesX provides

simultaneous credibility bands which are not discussed here, see Krivobokova et al.

[2010] for theoretical details. In the ZIP model, the corresponding quantities are also

calculated for ML.

The design matrices in ML and MCMC inferences are induced by cubic B-spline basis

functions constructed based on a grid of 20 equidistant knots within the range of the

covariates. In ML estimates of the ZIP model, the smoothing parameters 1
τ2

were

estimated by using the function find.hyper with starting value 3 for all parameters

and with default settings for the remaining arguments of the function. The priors for

regression coefficients and smoothing variances of the MCMC approach are chosen as

presented in Section 2.3. The number of iteration steps K for each simulation run r

in MCMC is set to 12, 000 with a burn-in phase of 2,000 iterations. We store and use

every 10-th iterate for inference.

Figure D1 (compare supplement Section D) shows the mean over all replications

achieved in the ZIP model of ML and MCMC compared to the true simulated func-

tions. In Figure 1, the logarithmic mean squared errors for both approaches are

plotted in form of boxplots. Finally, we look at pointwise 95% coverage rates for the
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Figure 1: ZIP additive model. log(MSE) of ML and MCMC estimates
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ZIP model in Figure 2. 80% coverage rates have also been computed but showed a

similar qualitative behaviour and are therefore omitted. The following findings can

1 2 3 4 5 6

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Coverage rate f1
 λ

−3 −2 −1 0 1 2 3

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Coverage rate f2
 λ

1 2 3 4 5 6

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Coverage rate f1
 π

x1

ML
MCMC

−3 −2 −1 0 1 2 3

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Coverage rate f2
 π

x2

Figure 2: ZIP additive model. Pointwise 95% coverage rates of ML and MCMC

estimates

be obtained from the described study for the ZIP model:

• Bias: Averaging all replications leads to satisfactory results for ML and MCMC

with only slightly too smooth mean estimates in extreme areas of effects. On

the boundary of covariates, MCMC tends to fit the true functions better.

• MSE: Figure 1 confirms the observation that both methods deliver similar mean

results since the boxplots of the logarithmic mean squared errors resemble each

other summarized over all replications. In general, the nonlinear functions with

effects on rate λ seem to be easier to estimate than the ones impacting the

probability of the additional zeros π. This can be seen in the smaller values of

the mean squared errors of fλ
1 and fλ

2 compared to the ones of fπ
1 and fπ

2 .

• Pointwise coverage rates: Figure 2 provides evidence that the Bayesian ap-

proach provides valid confidence intervals which cannot be obtained based on

the asymptotic theory of ML. Note, that a corresponding warning is already

given in the manual of Stasinopoulos et al. [2008, p.51]. There it is said that
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standard errors for fitted distribution parameters might be unreliable if the link

function is not the identity function. For MCMC, the 95% level of the credible

intervals is mostly maintained.

In conclusion, bias and MSE support that results obtained with MCMC are at least

as reliable as those obtained with ML. In addition, the better coverage properties of

the credible intervals obtained with MCMC render our Bayesian approach a strong

competitor to existing ML estimates.

As stated earlier, a similar simulation study was performed for the ZINB model but

no reliable results could be achieved with ML. We therefore only discuss results for

MCMC estimates. To have a comparative component we repeated the simulation

study with the same simulated effects but doubled the sample size to n = 2, 000

observations and plotted the mean over all mean estimates for both sample sizes in

Figure D2 of the supplement. All corresponding logarithmic mean squared errors of

the 250 replications computed from MCMC estimates are given in Figure 3, as well as
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Figure 3: ZINB additive model. log(MSE) of MCMC estimates

95% pointwise credible intervals in Figure 4. Results can be summarized as follows:

• Bias: Averaging all 250 replications leads to mean estimates that are very close

to the true function.

• MSE: As expected, the mean squared error is reduced by increasing the sample
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Figure 4: ZINB additive model. Pointwise 95% coverage rates of MCMC estimates

size. Similar to the ZIP model, is is notable that the expectation μ of the

underlying count process is easier to estimate than the probability of additional

zeros. The same is observable here for the overdispersion parameter δ. The

decline in quadratic deviations from the true function by increasing the sample

size has its greatest effect in f δ
1 , such that the outliers with an MSE greater

than one vanish.

• Pointwise coverage rates: The pointwise coverage rates in Figure 4 indicate

reliable credible intervals for both sample sizes.

In a nutshell, the positive results found in the simulation on ZIP data carry over to

the more general and complex situation of ZINB data. In fact, there is no sign of a

deteriorated performance of the Bayesian estimation approach despite the additional

complexity introduced by a third distributional parameter.
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4.2 Geoadditive Models

In a second step, the simulation studies for all three, the ZIP, ZINB and NB model

have been extended where an additional spatial effect on the Western part of Germany

was simulated as follows

fλ
spat(l) = fμ

spat(l) = sin(xcl y
c
l ) + εl

fπ
spat(l) = sin(xcl ) cos(0.5y

c
l ) + επl

f δ
spat(l) = 0.5xcly

c
l + εδl .

The structured part of the spatial effect fspat is estimated by a Markov random field

and is simulated on the basis of centroids cs with standardized coordinates (xcs, y
c
s),

s ∈ {1, . . . , S} of the S = 327 regions in Western Germany. The unstructured part

is described by an additional random effect εs ∼ N(0, 1/16) for each of the regions.

In Figure D3 of the supplement, the two simulated complete spatial effects for the

rate λ of the count process as well as for the probability of the additional zeros π in

case of a ZIP model are visualized. The model for a generic predictor η can now be

written as

η = f1(x1) + f2(x2) + f spat + ε = Z1β1 +Z2β2 +Zspatβspat + ε.

Estimates are based on a two-level structured additive regression where the total

spatial effect is decomposed in a structured part f spat and an unstructured effect ε.

The basic idea of the framework was introduced in Section 3.3.

Since the mixing of the Markov chains in a geoadditive model is in general less satis-

factory than in additive models, the number of iterations is increased to 55,000 with

a burn-in phase of 5,000. We store each 50-th iterate so that the final sample size

of 1,000 is retained. To find a desirable sample size for which satisfactory estimate

results can be achieved, we performed estimates for n = 1, 000, 2, 000, 4, 000 and

16, 000 observations. Note, that in the following we restrict to the presentation of

results in the ZIP model. Results for the ZINB model are summarized at the end of

this section. An illustration of results for this model are shown in Section E.2 as well

as in E.1.2 for the the NB model.

As has been shown in Lang and Fahrmeir [2001] the unstructured and the structured

spatial effect can generally not be separated and are often estimated with bias. Only
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the sum of both effects is estimated satisfactorily. This means in practice that only

the complete spatial effect should be interpreted and nothing (or not much) can be

said about the relative importance of both effects. Exceptions are cases where one of

both effects (either the unstructured or the structured effect) is estimated practically

zero and the other effect clearly dominates. We therefore present the estimated

complete spatial effect compared to the true simulated effect for two selected sample

sizes n = 1, 000 and 4, 000 in Figure 5. Beside this, the log(MSE) in Figure 6 and

the kernel densities of complete spatial effects in Figure D4 give further information

about the quality of the inference.
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Figure 5: ZIP geoadditive model. Estimated complete spatial effects

The results visualized in these figures can be summed up as follows:

• MSE: The spatial effect has higher log(MSE) compared to the nonlinear effects

but we observe that for greater sample sizes the MSE can be reduced in all

effects. If one compares Figure 1 with Figure 6, it is positive to note that for

sample size n = 1, 000 an additional spatial effect does not impair the MSE of

the nonlinear effects.
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Figure 6: ZIP geoadditive model. log(MSE) of nonlinear and complete spatial effects

• Bias: Figure 5 shows that an increase of the sample size improves the estimates.

Extreme values of the spatial effect are most difficult to estimate where both

high negative and high positive effects are underestimated. Together with Fig-

ure D4 it can be said that the complete spatial effect tends to be rated too

smooth in comparison with the true effect.

Results showed that with a sample size of n = 4, 000 the estimated complete spatial

effect is similar to the simulated, true one. The quality of mean estimates of nonlinear

effects remains as in the previous section even when adding an additional spatial effect.

Hence, it can be said that both, nonlinear and spatial effects are well identified in the

estimates especially when taking the complexity of the models into account. Similar

basic outcomes are obtained for the NB and ZINB models.

5 Application: Patent Citations

In our first application we will analyze the number of citations of patents granted

by the European Patent Office (EPO). An inventor who applies for a patent has

to cite all related, already existing patents his patent is based on. The data have

originally been collected to study the occurrence of objections against patents on the
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number of citations for 4,866 patents, see [Graham et al., 2002, Jerak and Wagner,

2006]. Details about data set including summary statistics and a discussion about

outlier removal can be found in [Fahrmeir et al., 2013].

A raw descriptive analysis of the response variable number of citations (ncit) gives

mean 1.64 and variance 7.53. Roughly 46% of the observations are zeros, the smallest

and largest observed values are zero and 40. While these summary statistics do

not take into account the potential covariate effects, they already provide a rough

indication that overdispersion and zero-inflation may be relevant to obtain a realistic

model for the number of citations.

To investigate the relevance of overdispersion and zero-inflation we consider the four

candidates Poisson, ZIP, negative binomial and ZINB as possible distributions for the

response and use the predictor structure

η = f1(year) + f2(ncountry) + f3(nclaims) + x′β

for all relevant model parameters. Here, year is the grant year, ncountry denotes the

number of designated states, nclaims are the number of claims against the patent and

x′β contains linear effects of further binary covariates described in [Fahrmeir et al.,

2013] and an intercept term. The nonlinear effects are modeled by cubic P-splines

with 20 inner knots and second order random walk prior. Estimates are usually based

on 12,000 iterations and a burn-in phase of 2,000 iterations to ensure convergence.

Every 10-th iterate is stored to obtain a sample of close-to-independent samples.

Convergence and mixing of the Markov chains were assessed graphically. While no

severe problems were found for the mixing and convergence of Poisson, ZIP and NB

model, the mixing behavior for the parameters in the probability for additional zeros

π of the ZINB model was somewhat problematic. This problem originates from the

fact that there is only relatively weak evidence for zero-inflation when accounting for

overdispersion and therefore the effects and in particular the level of the probability

for additional zeros are only weakly identified. Therefore we increased the number of

iterations for the ZINB model to 202,000 and a thinning parameter of 200.

The results of all models were compared in terms of normalized (randomized) quantile

residuals as a graphical device suggested by Stasinopoulos et al. [2008]: For an obser-

vation yi, the residual is given by r̂i = Φ−1(ui) where Φ−1 is the inverse cumulative

distribution function of a standard normal distribution, ui is a random value from
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the uniform distribution on the interval [F (yi − 1|θ̂), F (yi|θ̂)], θ̂ comprises all esti-

mated model parameters and F (·|θ̂) is the cumulative distribution function obtained

by plugging in these estimated parameters. If the residuals are evaluated for the true

model, they follow a standard normal distribution [Dunn and Smyth, 1996] and there-

fore models can be checked by quantile-quantile-plots. Since the residuals are random,

several randomized sets of residuals have to be studied before a decision about the

adequacy of the model can be made. Figure 7 shows one realization for the Poisson,

ZIP, negative binomial and ZINB model. It clearly indicates a preference for the neg-

ative binomial or ZINB model that provide a considerably better fit for estimating

the distribution of patent citations. Although the residuals of the Poisson model can

be improved applying the ZIP model, the sample quantiles greater than 2 are too high

compared to the true quantiles. Both, the negative binomial and the ZINB model

seem to overcome this problem. In a second step, we applied proper scoring rules
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Figure 7: Patent citations. Comparison of quantile residuals

proposed by Gneiting and Raftery [2007] in order to confirm the findings assessed

by the residuals: Let y1, . . . , yn be data in a hold out sample and p̂j the estimated

probabilities of a predictive distribution, p̂jk = p(yj = k). Then a score is obtained by

summing up individual score contributions, i.e. S =
∑n

j=1 S(p̂j , yj). Let p0 be the true

distribution, then Gneiting and Raftery [2007] take the expected value of the score

under p0 in order to compare different scoring rules. A scoring rule is called proper if
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S(p0, p0) ≥ S(p̂, p0) for any predictive distribution p̂ and it is strictly proper if equal-

ity holds if and only if p̂ = p0. We consider three scores given in Gneiting and Raftery

[2007]: the Brier score or quadratic score, S(p̂j , yj) = −∑k(1(yj = k) − p̂jk)
2, the

logarithmic score, S(p̂j , yj) = log(p̂jyj), and the spherical score S(p̂j, yj) =
p̂jyj√∑

k p̂2jk
.

All these scoring rules are strictly proper but the logarithmic scoring rule has the

drawback that it only takes into account one single probability of the predictive dis-

tribution and is therefore susceptible to extreme observations. In our application, the

predictive distribution is assessed by a ten-fold cross validation. Table 1 summarizes

the three scores for all four models. Similar to the residuals, the scores indicate that

a Poisson distribution is the worst assumption. The scores of the ZIP are higher com-

pared to Poisson but the best scores are obtained from NB and ZINB. In conclusion

it can be said that overdispersion plays a major role in this data set and that there

is some evidence for additional zero-inflation. Since the residuals look slightly better

Model Brier Score Logarithmic Score Spherical Score

Poisson -3,773.76 -10,530.62 32.41

ZIP -3,456.48 -8,808.44 36.75

NB -3,413.41 -8,120.43 37.31

ZINB -3,388.40 -7,999.92 37.64

Table 1: Patent citations. Evaluated scores

for ZINB compared to NB and all three scores would prefer this model as well, we

choose the ZINB model as our final model. Figure 8 displays mean sample results

of the stored MCMC iterates for all three parameters and with respect to the three

covariates year, nclaims and ncountry (row by row) together with pointwise 80%

and 95% credible intervals. The vertical stripes indicate the relative amount of ob-

servations relating to the different covariate values (the darker the stripes, the more

data). The following observations and interpretations on selected effects of Figure 8

can be made:

• The first row shows the estimated centered effects on the expectation μ of

the underlying count process (which is not the same as the expectation of the

response). For example, if we look at patents with grant year later than 1985,

we estimate that patents are cited the less the newer they are.
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Figure 8: Patent data. Estimated centered nonlinear effects in the ZINB model

• In the second row, the corresponding estimates on the probability of structural

zeros π indicate covariate values with a high probability of never being cited.

With respect to the variable year , it is reasonable to have a decreasing chance

of no citations for rising age of the patent. The effects of ncountry and nclaims

are insignificant in the sense that the confidence bands cover the zero line.

• The expectation of y given the covariate information is given by (1 − π)μ :

For an adequate interpretation it is important to see that an increase of the

effects on μ and a decline of the function estimates on π result in a growing

estimated expectation and vice versa. In general, the effect of a covariate on

the expectation (1 − π)μ is therefore hard to predict. For the patent data, we

find that (1− π)μ behaves similar as μ in year , ncountry and nclaims when all

other effects are kept constant.

• The variance of a zero-inflated negative binomial distributed variable can be

derived from equation (1) as Var(yi) = (1−πi)μi

(
1 + μi

(
δ−1
i + πi

))
. From this

we find that δ is inversely proportional to the variance such that with respect to

one effect in δ, and all others maintained fixed, an increasing function results in
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a smaller variance. However, the estimated effects shown in Figure 8 are largely

insignificant.

6 Application: Car Insurance

We also apply the developed methods to a data set of size n = 162, 548 from car

insurance in Belgium of the year 1997. The insurance premium in car insurances

is based on detailed statistical analyses of the risk structure of the policyholder.

One important step is to model the loss frequency which usually depends on the

characteristics of the policyholder as well as the vehicle. Typical covariates are the

age of the policyholder (ageph), age of the vehicle (agec), the engine power (power)

and the previous claim experience. In Belgium, the claim experience is measured by

a 22-step bonus-malus-score (bm). The higher the score, the better the history of the

policyholder. The data also provides the geographical information in which of the

589 districts (distr) in Belgium the policyholder’s car is registered.

The data set has already been treated in Denuit and Lang [2004] who applied geoad-

ditive Poisson models. A detailed analysis based on both count data regression for

claim frequencies and zero-adjusted models [as introdued in Heller et al., 2006] for

claim sizes in the framework of GAMLSS is provided in Klein et al. [2013]. Here we

build upon these more detailed treatments to illustrate the application of zero-inflated

and overdispersed models for claim frequencies. We therefore consider the predictor

η = f1(ageph)+ sex f2(ageph)+ f3(agec)+ f4(bm)+ f5(power)+ fspat(distr)+ (x)′ β

for the mean parameter in the count process, i.e. λ in case of ZIP and μ in case of NB

or ZINB. The spatial effect has been modeled by a Markov random field and the term

(x)′ β contains additional linear effects of dummy variables [Denuit and Lang, 2004]

that will not be discussed here. Since the response variable contains a lot of zeros and a

limited number of observations with more than one claim, estimating full models with

all potential covariates for the remaining parameters (π and/or δ) causes problems in

the mixing behavior especially in case of the ZINB model. We therefore performed

a preliminary variable selection starting from very simple predictor specifications for

π or δ and including step by step effects on the basis of the deviance information

criterion (DIC), see Spiegelhalter et al. [2002]. In Section F of the supplement, we
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investigated the performance of the DIC for selecting predictors in zero-inflated and

overdispersed count data regression and basically found that the DIC provides suitable

guidance also in this extended model class. Based on results obtained for the ZIP

and the NB model, both of which indicate a very good fit for the data as shown by

the quantile residuals visualized in Figure 9, we refrained from searching for (even)

more complex ZINB models.
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Figure 9: Insurance claims. Comparison of quantile residuals

Model Brier Score Logarithmic Score Spherical Score

Poisson -32,261.64 -62,131.83 360.9523

ZIP -32,247.24 -61,997.6 360.9736

NB -32,252.93 -61,981.25 360.9660

Table 2: Insurance claims. Evaluated scores

Table 2 shows the calculated scores for the Poisson, ZIP and NB distribution which

have been introduced in Section 5 and which are again obtained by a ten-fold cross

validation. In general, differences are smaller than for the patent application but still

there is an indication for additional zero-inflation or overdispersion since the Poisson

distribution always yields the smallest score. For the Brier and spherical score, there

is some evidence in favor of the ZIP model while the logarithmic score would prefer

the NB model. The quantile residuals depicted in Figure 9 tell a similar story and

indicate that the Poisson distribution is not able to adequately represent the claim

frequency distribution. Both ZIP and NB yield residuals that are very close to the

diagonal and therefore provide a very similar fit. For ZIP, there are some deviations

from the diagonal line for larger residuals which may hint at additional overdispersion.

These deviations may also be responsible for the fact that the logarithmic score favors

the NB model since this score reacts particularly sensitive to predictive problems of
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extreme (in our case large) observations. In summary, there is no clear evidence

in favor of ZIP or NB and both models seem to provide a reasonable fit. In the

following, we present results for the ZIP model to illustrate the interpretation of

estimated effects. The selected model for π provides the predictor

ηπ = fλ
1 (ageph) + fλ

2 (agec) + fπ
spat(distr) + (xπ)′ βπ.

The spatial effect contains only a Markov random field since as in the predictor for λ

an additional i.i.d random effect was neither significant nor selected by the DIC. In

Figure 10 the estimated nonlinear effects on λ and π are plotted together with 80%

and 95% pointwise credible intervals. Again, vertical stripes indicate relative amount

of data of the corresponding covariate values. Figure 11 depicts the estimated spatial
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Figure 10: Insurance claims. Estimated centered nonlinear effects in the ZIP model

effects on λ and π. The estimated effects for λ in Figure 11 are generally close to those

in Denuit and Lang [2004]. We discover for example that the age-sex interaction is

significant in the way that males younger than 35 and males older than 80 report more

accidents than females of the same ages. The peak of the effect of age at around 45 can

be explained by the fact that asking older relatives to pay the policy is very common
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Estimated spatial effect on λ

−0.63 0.630

Estimated spatial effect on π

−0.1 0.10

Figure 11: Insurance claims. Estimated spatial effects in the ZIP model

in Belgium because of the high premiums for young policyholders. The spatial effect

in Figure 11 clearly indicates a large number of expected claims in urban areas like

Brussels, Antwerp or Liège.

For π the monotonically increasing effect of agec can be seen as an indication for an

excess of zero claims for older cars. The estimated spatial effect for π is pronounced

as well but generally weaker than for λ.

7 Summary and Conclusions

In this paper, we developed numerically efficient, Bayesian zero-inflated and overdis-

persed count data regression with semiparametric predictors as special cases of

GAMLSS relying on iteratively weighted least squares proposals. A particular focus

has been laid on the ZIP, NB and ZINB distribution as standard choices for applied

work. Our framework goes far beyond the model flexibility in the gamlss package

of R, [Stasinopoulos and Rigby, 2007], as our predictors may include complex, hi-

erarchical spatial effects and may in general cope with hierarchical data situations

as described in Lang et al. [2013]. Moreover, simulation studies revealed that the

Bayesian approach yields reliable confidence intervals in situations where the asymp-

totic likelihood theory fails while at the same time giving point estimates of at least

similar quality. For model choice, we considered quantile residuals as a possibility to

evaluate the general potential of a given model to fit the data. The deviance infor-

mation criterion takes the complexity of an estimated model into account and can

therefore be a valuable tool both in comparing response distributions and predictor
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specifications. Proper scoring rules evaluated on hold out samples allow to assess the

predictive ability of estimated models. Nevertheless, model choice and variable selec-

tion remain relatively tedious in particular due to the multiple predictors involved.

For the future, it would therefore be desirable to develop automatic model choice and

variable selection strategies in the spirit of Belitz and Lang [2008] in a frequentist

setting or Scheipl et al. [2012] in a Bayesian approach via spike and slab priors.

The Bayesian formulation of GAMLSS also provides the possibility to include mod-

ified / extended prior structured without major changes of the basic algorithm. For

example, truncated normal priors may be considered to further improve the numer-

ical efficiency or Dirichlet process mixture priors could be included to facilitate the

inclusion of non-normal random effects distributions. It will also be of interest to

extend the Bayesian treatment of GAMLSS to further classes of discrete and contin-

uous distributions or even combinations of both. A first attempt in the direction of

the latter has been made in Klein et al. [2013] in the context of zero-adjusted models

as introduced in a frequentist setting by Heller et al. [2006].
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A A backfitting algorithm

In this section, we summarize a backfitting algorithm, see [Hastie and Tibshirani,

1990], for obtaining the starting values for the MCMC sampler utilized in the paper.

We basically approximate the maximum of the log-likelihood, this is the mode, by

maximizing numerically its quadratic approximation:

1. Initialization of values: Set β
(0)
1 = . . . = β(0)

p = 0 as well as β
(0)
0 = g(ρ̂)

where g is the link function between the generic model parameter ρ and the

predictor η. ρ̂ is an simple estimator for ρ, just depending on the responses.

If for example, ρ stands for the average rate λ̄ =
∑n

i=1 λi in the ZIP model, ρ̂

could be the mean of the observations y = (y1, . . . , yn)
′. Let K be the maximum

number of iterations in the algorithm and set k = 0.

2. Estimation of f 1, . . . , f p and β0 :

(a) Set r = 0 and for j = 1, . . . , p

f
(r)
j = f

(k)
j = Zjβ

(k)
j as well as β

(r)
0 = β

(k)
0 = g(ρ̂)

(b) Outer backfitting slope: Compute

z(k) = η(k) +
(
W (k)

)−1

v(k)

1



and define S
(k)
j := Zj

(
Z ′

jW
(k)Zj +

1
τ2j
Kj

)−1

Z ′
jW

(k), j = 1, . . . , p

(c) Inner backfitting slope: Calculate for j = 1, . . . , p

f
(r+1)
j = S

(k)
j

⎛
⎜⎝z(k) −

p∑
s=1
s �=j

f (r)
s

⎞
⎟⎠

(d) Centering of the estimations

(e) If for fixed ε > 0 ∣∣∣∣β(r+1)
0 − β

(r)
0

∣∣∣∣+ p∑
j=1

∥∥∥f (r+1)
j − f

(r)
j

∥∥∥∣∣∣∣β(r+1)
0

∣∣∣∣ + p∑
j=1

∥∥∥f (r+1)
j

∥∥∥ < ε

end the inner backfitting slope, set for j = 1, . . . , p

Zjβ
(k+1)
j = f

(r+1)
j as well as β

(k+1)
0 = β

(r+1)
0

and go to (f). Otherwise set r = r + 1 and go to (c).

(f) If k < K go to (b). Otherwise stop the algorithm.

B Working Weights

B.1 Computation of the Working Weights

The working weights given in Section 3 might not be that obvious at the first sight.

For some of them several steps of calculations and simplifications had to be done.

In principle, the approach is simple: For the score vectors v the first derivatives of

the log-likelihood with respect to each predictor have to be computed. The working

weights are achieved by taking the expectation of the second derivative of the log-

likelihood, compare Section 3 for more detailed explanations and formulas. We start

with the ZIP model and make use of the following equations:

l =
∑
yi=0

log (πi + (1− πi) exp(−λi)) +
∑
yi>0

(log(1− πi) + yi log(λi)− λi − log(yi!))

∂πi
∂ηπi

= π(1− πi)

∂λi
∂ηλi

= λi

E(1{0}(yi)) = p(yi = 0)

2



vλi =
∂l

∂ηλi

=
−(1− πi)λi exp(−λi)
πi + (1− πi) exp(−λi)1{0}(yi) + (yi − λi)(1− 1{0}(yi))

=
πiλi

πi + (1− πi) exp(−λi)1{0}(yi) + (yi − λi)

vπi =
∂l

∂ηπi

=
πi(1− πi)(1− exp(−λi))
πi + (1− πi) exp(−λi) 1{0}(yi)− πi(1− 1{0}(yi))

=
πi

πi + (1− πi) exp(−λi)1{0}(yi)− πi

wλ
i = E

(
− ∂2l(

∂ηλi
)2
)

= E

(
− πiλi
πi + (1− πi) exp(−λi)1{0}(yi)− πi(1− πi)λ

2
i exp(−λi)

(πi + (1− πi) exp(−λi))21{0}(yi) + λi

)

=
λi(1− πi) (πi + (1− πi) exp(−λi)− exp(−λi)λiπi)

πi + (1− πi) exp(−λi)

wπ
i = E

(
− ∂2l

(∂ηπi )
2

)

= E

(
− πi(1− πi)

πi + (1− πi) exp(−λi)1{0}(yi)− π2
i (1− πi)(1− exp(−λi))

(πi + (1− πi) exp(−λi))2 1{0}(yi)− πi(1− πi)

)

=
π2
i (1− πi)(1− exp(−λi))
πi + (1− πi) exp(−λi)

For the ZINB model calculations can be written as follows:

l =
∑
yi=0

log

(
πi + (1− πi)

(
δi

δi + μi

)δi
)

+
∑
yi>0

(log(1− πi) + log(Γ(yi + δi))− log(Γ(yi + 1))− log(Γ(δi)))

+
∑
yi>0

(δi log(δi) + yi log(μi)− (δi + yi) log(δi + μi))

3



∂πi
∂ηπi

= πi(1− πi)

∂μi

∂ημi
= μi

∂δi
∂ηδi

= δi

∂

∂ημi

(
δi

δi + μi

)δi

= − δiμi

δi + μi

(
δi

δi + μi

)δi

∂

∂ηδi

(
δi

δi + μi

)δi

= δi

(
δi

δi + μi

)δi (
log

(
δi

δi + μi

)
+

μi

δi + μi

)
E(1{0}(yi)) = p(yi = 0)

vμi =
∂l

∂ημi

=
−(1 − πi)δiμi

(
δi

δi+μi

)δi
(
πi + (1− πi)

(
δi

δi+μi

)δi)
(δi + μi)

1{0}(yi) +
yiδi − δiμi

δi + μi
(1− 1{0}(yi))

=
πiδiμi(

πi + (1− πi)
(

δi
δi+μi

)δi)
(δi + μi)

1{0}(yi) +
yiδi − δiμi

δi + μi

vπi =
∂l

∂ηπi

=

πi(1− πi)

(
(1−

(
δi

δi+μi

)δi)

πi + (1− πi)
(

δi
δi+μi

)δi 1{0}(yi) + πi(1− 1{0}(yi))

=
πi

πi + (1− πi)
(

δi
δi+μi

)δi 1{0}(yi)− πi

vδi =
∂l

∂ηδi

=
(1− πi)δi

(
δi

δi+μi

)δi (
log
(

δi
δi+μi

)
+ μi

δi+μi

)
(
πi + (1− πi)

(
δi

δi+μi

)δi) 1{0}(yi)

+

(
δi log

(
δi

δi + μi

)
+
δiμi − yiδi
δi + μi

)(
1− 1{0}(yi)

)
+ δi (ψ(yi + δi)− ψ(δi))

= δi

(
ψ(yi + δi)− ψ(δi) + log

(
δi

δi + μi

)
+
μi − yi
δi + μi

)
−
δiπi

(
log
(

δi
δi+μi

)
+ μi

δi+μi

)
πi + (1− πi)

(
δi

δi+μi

)δi 1{0}(yi)
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wμ
i = E

(
− ∂2l

(∂ημi )
2

)

= E

⎛
⎜⎜⎝− πiδiμi(

πi + (1− πi)
(

δi
δi+μi

)δi)
(δi + μi)

1{0}(yi)

⎞
⎟⎟⎠

+ E

⎛
⎜⎜⎝ πiδiμ

2
i(

πi + (1− πi)
(

δi
δi+μi

)δi)
(δi + μi)2

1{0}(yi)

⎞
⎟⎟⎠+

δiμi

(δi + μi)2
E(yi)

− E

⎛
⎜⎜⎜⎝

(1− πi)πiδ
2
i μ

2
i

(
δi

δi+μi

)δi
(
πi + (1− πi)

(
δi

δi+μi

)δi)2

(δi + μi)2
1{0}(yi)

⎞
⎟⎟⎟⎠+

δ2i μi

(δi + μi)2

=
δiμi (1− πi)

(δi + μi)
−

πi(1− πi)δ
2
i μ

2
i

(
δi

δi+μi

)δi
(
πi + (1− πi)

(
δi

δi+μi

)δi)
(δi + μi)

2

wπ
i = E

(
− ∂2l

(∂ηπi )
2

)

= E

⎛
⎜⎜⎜⎝− πi(1− πi)

πi + (1− πi)
(

δi
δi+μi

)δi 1{0}(yi)−
π2
i (1− πi)

(
1−

(
δi

δi+μi

)δi)
(
πi + (1− πi)

(
δi

δi+μi

)δi)2 1{0}(yi)− πi(1− πi)

⎞
⎟⎟⎟⎠

=

π2
i (1− πi)

(
1−

(
δi

δi+μi

)δi)

πi + (1− πi)
(

δi
δi+μi

)δi

5



wδ
i = E

(
− ∂2l(

∂ηδi
)2
)

= E

⎛
⎜⎝δiπi

(
log
(

δi
δi+μi

)
+ μi

δi+μi

)
πi + (1− πi)

(
δi

δi+μi

)δi 1{0}(yi) +
δiπi

(
μi

δi+μi
− δiμi

(δi+μi)
2

)
πi + (1− πi)

(
δi

δi+μi

)δi1{0}(yi)

⎞
⎟⎠

− E

⎛
⎜⎜⎜⎝
δ2i (1− πi)πi

(
log
(

δi
δi+μi

)
+ μi

δi+μi

)2
(
πi + (1− πi)

(
δi

δi+μi

)δi)2 1{0}(yi)

⎞
⎟⎟⎟⎠

− δi

(
E (ψ(yi + δi))− ψ(δi) + log

(
δi

δi + μi

)
+ E

(
μi − yi
δi + μi

))

− δi

(
δi E (ψ1(yi + δi))− δiψ1(δi) +

μi

δi + μi
− δiμi

δi + μi
+ E

(
δiyi

(δi + μi)
2

))

= −δi(1− πi)

(
log

(
δi

δi + μi

)
+

μi

δi + μi

)
−

(1− πi)πiδ
2
i

(
δi

δi+μi

)δi (
log
(

δi
δi+μi

)
+ μi

δi+μi

)2
πi + (1− πi)

(
δi

δi+μi

)δi
−δi (E(ψ(yi + δi))− ψ(δi))− δ2i (E(ψ1(yi + δi))− ψ1(δi))

B.2 Positive Definiteness of the Working Weights

Lemma B.1. The working weights W λ and W π in the ZIP model are positive defi-

nite.

Proof. As both matrices are diagonal it is only to show that all entries on the diagonal

are greater than zero. Let us start with W λ: We need to proof that

πi + (1− πi) exp(−λi) > λiπi exp(−λi)

remains true because the denominator in (7) is obviously greater than zero. Due to

λi > log(λi) we get

λi exp(−λi) = exp(log(λi)− λi) < 1.

Together with (1− πi) exp(−λi) > 0 it follows that

λiπi exp(−λi) < πi < πi + (1− πi) exp(−λi),

and hence, that the eigenvalues of W λ are greater than zero. For W π in (8) we need

only to show

exp(−λi) < 1.

This follows directly from λi > 0.
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Lemma B.2. The working weights W μ and W π in the ZINB model are positive

definite.

Proof. As both matrices are diagonal it is only to show that all entries on the diagonal

are greater than zero. Let us start with W μ in (9) by reducing all terms to their

common denominator (
πi + (1− πi)

(
δi

δi + μi

)δi
)
(δi + μi)

2

and comparing the numerators. The whole numerator is then given by

δ2i μiπi(1− πi)

(
1−

(
δi

δi + μi

)δi
)

+ δiμ
2
i (1− πi)

2

(
δi

δi + μi

)δi

+ δ2i μi(1− πi)

(
δi

δi + μi

)δi

+ δiμ
2
iπi(1− πi)

(
δi

δi + μi

)δi
((

δi + μi

δi

)δi

− δi

)
.

The first term is greater than zero as we assume
(

δi
δi+μi

)δi
< 1. The second an third

one are obviously also greater than zero because all factors are greater than zero.

It still remains the last term δiμ
2
iπi(1− πi)

(
δi

δi+μi

)δi ((
δi+μi

δi

)δi − δi

)
. For this, we

differ between the two cases δi ≤ μi and δi > μi.

(i) δi ≤ μi: It is sufficient
(

δi+μi

δi

)δi ≥ δi or equivalently δi log
(
1 + μi

δi

)
≥ log(δi) to

show. Because of μi

δi
≥ 1 it is enough to prove that 1

2
δi ≥ log(δi) holds true. If

0 ≤ δi ≤ 1 it is nothing to do. For δi > 1:

log(δi) =
∞∑
k=1

1

k

(
δi − 1

δi

)k

=
δi − 1

δi
+

1

2

(
δi − 1

δi

)2

+
1

3

(
δi − 1

δi

)3

+ . . .

=
1

2
+

1

2
− 1

2δi
− 1

2δi
+

1

2

(
δi − 1

δi

)2

+
1

3

(
δi − 1

δi

)3

+ . . .

≤ 1

2
+

1

2
− 1

2δi
+

1

2

(
δi − 1

δi

)2

+
1

3

(
δi − 1

δi

)3

+ . . .

≤
∞∑
k=0

1

2

(
δi − 1

δi

)k

=
1

2

1

1− δi−1
δi

=
1

2
δi.

Finally, we have (
δi + μi

δi

)δi

≥ δi

and the third term is greater than zero in case of δi ≤ μi.
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(ii) δi > μi: In this case, we rearrange the terms of the nominator as follows:

δ2i μi(1− πi)
2

(
δi

δi + μi

)δi

+ δiμ
2
iπi(1− πi) + δiμ

2
i (1− πi)

2

(
δi

δi + μi

)δi

+ δ2i μiπi(1− πi)

(
1− μi

(
δi

δi + μi

)δi
)
.

It is sufficient to prove that

1

μi

(
δi + μi

δi

)δi

≥ 1.

If δi ≤ 1, it is nothing to show. For δi ≥ 2, we have

1

μi

(
1 +

μi

δi

)δi

=
1

μi

∞∑
k=0

(
δi
k

)(
μi

δi

)k

≥ 1

μi

�δi�∑
k=0

(
δi
k

)(
μi

δi

)k

≥ 1

μi
+

1

μi

(
μi

δi

)�δi�
+

1

μi

�δi�−1∑
k=1

(
δi
k

)(
μi

δi

)k

≥ 1

μi

+
1

μi

(
μi

δi

)�δi�
+

1

μi

δi

�δi�−1∑
k=1

(
μi

δi

)k

=
1

μi
+

1

μi

(
μi

δi

)�δi�
+

1

μi
δi
μi

δi

�δi�−2∑
k=0

(
μi

δi

)k

=
1

μi

+
1

μi

(
μi

δi

)�δi�
+

1−
(

μi

δi

)�δi�−1

1− μi

δi

≥ 1,

where �δi� = max{j ∈ Z|j ≤ δi}. Remains the case 1 < δi < 2. But then it is

1

μi

(
δi + μi

δi

)δi

≥ 1

μi

δi + μi

δi

≥ 1

μi

δi + μi

2

≥ 1

μi

2μi

2

= 1.

All in all we get that the entries on the diagonal of W μ are greater than zero and

therefore that the working weight W μ is positive definite.

For W π we need to look at (10). As
(

δi
δi+μi

)δi
is smaller than one we get

1−
(

δi
δi + μi

)δi

> 0,
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so that all factors in (10) are greater than zero. In consequence all entries on the

diagonal of W π are greater than zero as desired.

C Propriety of the Posterior Distribution

Proof of Theorem 3.1. Following the steps in Fahrmeir and Kneib [2009], we finally

represent (2) in terms of η̃ = X̃ξ + Ṽ b + ε, ε ∼ N(0, τ0I) with reduced dimension

dim(ε)=k̃0 and for a subsample of observations. The advantage here is that this

model contains random effects with proper priors and individual-specific ε, such that

the findings of Sun et al. [2001] can be applied.

For each of the model terms Zjβj with improper prior precision matrix Kj we have

rk(Kj) = kj < dj = dim(βj). Note that for model terms with proper priors nothing

has to be done since in this case βj can be interpreted as a random effect without

reparameterisation. The result of Rue and Held [2005, p.91] allows us to divide βj

into two parts, a (dj − kj)-dimensional vector of fixed effects ξj with improper prior,

and a kj-dimensional vector bj of random effects with proper prior such that Zjβj =

Xjξj + V jbj holds. In order to clearly separate effects with respect to their priors,

we therefore first of all rewrite (2) as

η = Uγ +

p∑
j=1

Zjβj +Z0β0 (C.1)

where U consists of all linear effects and has full rank r and p(γ) ∝ const. The

additional term Z0β0 is a random effect with full rank n × d0 design matrix Z0,

rk(Z0) = d0 = dim(β0) such that d0 ≥ dj and k0 ≥ kj for j = 1, . . . , p with

k0 = rk(K0). The distribution of β0 is then given by a possibly improper prior

of the form (4), i.e.

p(β0) ∝
(

1

τ 20

)k0
2

exp

(
− 1

2τ 20
β′

0K0β0

)
.

The smoothing variance τ 20 is assumed to have an inverse gamma prior with parame-

ters a0, b0. As said in Fahrmeir and Kneib [2009] setting Z0 = I,β0 = ε ∼ N(0, τ0I),

(C.1) also covers individual specific random effects as a special case. In geoadditive

models, Z0β0 may represent a structured or unstructured spatial effect and usually

simply corresponds to the term with the largest number of parameters.
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The so far presented considerations and Fahrmeir and Kneib [2009, Section 4] allow

now to write (C.1) in a mixed model representation, including the additional term

Z0β0 as

η = Xξ + V b+ V 0b0, b0 ∼ N(0, τ0I), (C.2)

with dim(b0) = k0 where X captures terms with partially improper priors and is

a full rank augmentation of U , for details see Fahrmeir and Kneib [2009, Remark

1], and V represents the model part with proper priors and random effects. The

augmented design matrix X may possibly contain additional columns constructed

from the unpenalized part of β0 and β1 . . . ,βp. Let q be the number of additional

columns, such that rk(X) = r + q.

We make the following assumptions for eventually reordered observations yi:

1.

∫
fi(yi|ηθ1i , . . . , ηθmi )dηθ1i . . .dηθmi <∞ holds for observations i = 1, . . . , n∗

2. fi(yi|ηθ1i , . . . , ηθmi ) ≤ M holds for the remaining observations i = n∗ + 1, . . . , n.

As in Fahrmeir and Kneib [2009] we denote the submatrices of U θl ,Xθl ,Zθl =

(Zθl
1 , . . . ,Z

θl
p ) and Zθl

0 corresponding to i = 1, . . . , n∗, by (U θl)∗, (Xθl)∗, (Zθl)∗ and

(Zθl
0 )

∗, l = 1, . . . , m, and assume

3. rk
(
U θl
)
= rk

(
(U θl)∗

)
= rθl, rk(Xθl) = rk

(
(Xθl)∗

)
= rθl + qθl, rk(U θl,Zθl) =

rk
(
(U θl)∗, (Zθl)∗

)
= rθl + tθl for tθl ≥ 0 and rk

(
(Zθl

0 )
∗
)
≥ k̃0 for l = 1, . . . , m.

Note that the rank assumptions for Z∗
0 allow to select k̃0 linear independent rows of

(Zθ1
0 )∗, . . . , (Zθm

0 )∗ corresponding to a subset {i1, . . . , ik̃0} ⊂ {1, . . . , n∗} of observa-

tions. The submodel to those observations is denoted by

ηθl
s = U θl

s γ
θl +Zθl

s β
θl +Zθl

0sβ
θl
0 , (C.3)

with accordingly submatrices U θl
s ,Z

θl
s ,Z

θl
0s, l = 1, . . . , m. This enables to use the

arguments of Fahrmeir and Kneib [2009] who themselves refer to Theorem 3 in

Sun et al. [2001]. Then we claim

4. rk(Xθl
s ) = rk

(
(Xθl)∗

)
= rθl + qθl, rk(U θl

s ,Z
θl
s ) = rθl + t̃θl for t̃θl < tθl .
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Conditions 1. and 2. correspond to conditions (i) and (ii) in Fahrmeir and Kneib

[2009] and they themselves to (B1) and (B2) of Sun et al. [2001]. There, the case

of individual-specific effects is assumed. Fahrmeir and Kneib [2009] note that then

condition 4. is not needed. Last, we assume

5. kθlj + 2aθlj >
∑pθl

j=1 k
θl
j − t̃θl + qθl, j = 1, . . . , pθl, l = 1, . . . , m,

6. k̃0 − rθl − qθl + 2a−0 + 2
∑pθl

j=1(a
−
j )

θl > 0, (a−j )
θl = min(0, aθlj ), l = 1, . . . , m,

where aθlj , b
θl
j are the parameters of the inverse gamma prior for (τ 2)

θl.

Submodel (C.3) can for l = 1, . . . , m, be rewritten in mixed model representation as

ηθl
s = Xθl

s ξ
θl + V θl

s b
θl + V θl

0sb
θl
0 , V θl

0sb
θl
0 ∼ N

(
0, τ θl0 V θl

0s(V
θl
0s)

′
)

(C.4)

and V θl
0s(V

θl
0s)

′ has full rank k̃0. This leads to a normalized model,

νθl = X̃
θl
ξθl + Ṽ

θl
bθl + εθl, εθl ∼ N

(
0, τ θl0 I

)
(C.5)

via multiplication with
(
V θl

0s(V
θl
0s)

′
)−1/2

, compare Fahrmeir and Kneib [2009]. As

V θl
0s(V

θl
0s)

′ has full rank, we also have that
(
V θl

0s(V
θl
0s)

′
)−1/2

is regular for l = 1, . . . , m,

and hence, condition 4. also holds for the normalized submodel (C.5). Showing that

the posterior p(ξθ1 , . . . , ξθm, bθ1 , . . . , bθm , bθ10 , . . . , b
θm
0 , (τ 2)θ1, (τ 2)θm , (τ 20 )

θ1 , (τ 20 )
θm |y)

is proper is obviously equivalent to show the propriety of

p(ξθ1, . . . , ξθm , bθ1, . . . , bθm,νθ1 , . . . ,νθm , (τ 2)θ1 , (τ 2)θm , (τ 20 )
θ1, (τ 20 )

θm|y). First of

all it is

p(ξθ1 , . . . , ξθm , bθ1 , . . . , bθm ,νθ1 , . . . ,νθm, (τ 2)θ1 , . . . , (τ 2)θm , (τ 20 )
θ1 , . . . , (τ 20 )

θm |y)

∝
n∏

i=1

f(yi|ηθ1i , . . . , ηθmi )
m∏
l=1

p(νθl|ξθl, bθl, (τ 20 )θl)
m∏
l=1

p(bθl|(τ 2)θl)

×
k∏

l=1

p((τ 2)θl)
m∏
l=1

p((τ 20 )
θl)

∝
n∏

i=1

f(yi|ηθ1i , . . . , ηθmi )G,

where

G =
m∏
l=1

(
1

(τ 20 )
θl

)k̃0/2

exp

(
− 1

(τ 20 )
θl
(ν − X̃

θl
ξθl − Ṽ

θl
bθl)′(ν − X̃

θl
ξθl − Ṽ

θl
bθl)

)

×
m∏
l=1

(
1

|Q|θl
)1/2

exp

(
−(bθl)′Qθlbθl

2

) m∏
l=1

p((τ 2)θl)

m∏
l=1

p((τ 20 )
θl)
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and Qθl = Cov(bθl). From assumption 2. we get

p(ξθ1 , . . . , ξθm , bθ1 , . . . , bθm ,νθ1 , . . . ,νθm, (τ 2)θ1 , (τ 2)θm , (τ 20 )
θ1 , (τ 20 )

θm|y)
≤M∗∏n∗

i=1 f(yi|ηθ1i , . . . , ηθmi )G,

with M∗ =Mn−n∗
. Integrating over ξθ1, ξθm , bθ1 , bθm , (τ 2)θ1 , . . . , (τ 2)θm implies

p(νθ1 , . . . ,νθm, (τ 20 )
θ1 , (τ 20 )

θm |y)
≤M∗∏n

i=1 f(yi|ηθ1i , . . . , ηθmi )

∫
Gdξθ1 , . . . , dξθm , dbθ1 , . . . , dbθm, d(τ 2)θ1 , . . . , d(τ 2)θm .

The integral over G corresponds to G3 in (A.17) of Sun et al. [2001]. Hence, the

posterior is proper if and only if
∫
G < ∞. It can be bounded by their expressions

(A.25), if t̃θl = qθl for l = 1, . . . , m, and by (A.27), if t̃θl < qθl for any l ∈ {1, . . . , m}.
For some constant M̃ we therefore get the inequality

p(νθ1 , . . . ,νθm, (τ 2)θ1 , (τ 2)θm , (τ 20 )
θ1 , (τ 20 )

θm|y) ≤ M̃

n∗∏
i=1

f(yi|ηθ1i , . . . , ηθmi )g
(
(τ 20 )

θ1, . . . , (τ 20 )
θm
)
,

with

g
(
(τ 20 )

θ1 , . . . , (τ 20 )
θm
)

=

k∏
l=1

(
1

(τ 20 )
θl

)−(k̃0−rθl−qθl )/2−a−0 −∑pθl
j=1(a

−
j )θl

exp

(
−SSEθl

s +2bθl0
2(τ 20 )

θl

)

and

SSEθl
s := (ν − X̃

θl
ξθl − Ṽ

θl
bθl)′(ν − X̃

θl
ξθl − Ṽ

θl
bθl). (C.6)

Assumption 6., and SSEθl
s +2bθl0 > 0 for l = 1, . . . , m, imply∫

g
(
(τ 20 )

θ1 , . . . , (τ 20 )
θm
)
d(τ 2)θ1 , . . . , d(τ 2)θm <∞ and therefore for some constant C

p(νθ1, . . . ,νθm |y) ≤ C
n∗∏
i=1

f(yi|ηθ1i , . . . , ηθmi ).

Finally, it remains
∫
p(νθ1 , . . . ,νθm |y)dνθ1 , . . . , dνθm < ∞ to show. This is received

using the relation νθl =
(
V θl

0s(V
θl
0s)

′
)−1/2

ηθl
s for l = 1, . . . , m:

∫
p(νθ1, . . . ,νθm |y)dνθ1 , . . . , dνθm

=

∫
p(ηθ1

s , . . . ,η
θm
s |y) det

((
V θ1

0s(V
θ1
0s)

′)−1/2
)
dηθ1

s , . . . , det
((

V θm
0s (V

θm
0s )

′)−1/2
)
dηθm

s

≤ K

∫ n∗∏
i=1

fi(yi|ηθ1i , . . . , ηθmi )dηθ1i . . .dηθmi <∞

for some constant K.
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D Additional Graphics to Simulation Studies of

the Main Paper

f1
 λ=log(x1)

true function
ML
MCMC

−
1

0
1

1 2 3 4 5 6

f2
 λ=0.3x2cos(x2)

−
1

0
1

−3 −2 −1 0 1 2 3

f1
 π=sin(x1)

x1

−
1

0
1
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f2
 π=− 0.2x2

2

x2

−
1

0
1

−3 −2 −1 0 1 2 3

Figure D1: ZIP additive model. True curves of nonlinear effects together with overall

mean ML and MCMC estimates

E Further Simulation Studies

E.1 Negative Binomial Regression

E.1.1 Additive Models

For reasons of simplicity we keep the study design described in Section 4 of the main

paper. Hence, each of the predictors ημ, ηδ, introduced in Section 2.1 and linked to

the parameters μ and δ of a negative binomial distribution, is written as the sum of

two nonlinear functions f1 and f2,

fμ
1 (x1) = fμ

1 (x1) = log(x1), fμ
2 (x2) = fμ

2 (x2) = 0.3x2 cos(x2)
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Figure D2: ZINB additive model. True curves of nonlinear effects together with

overall mean MCMC estimates
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Figure D3: ZIP geoadditive model. Simulated complete spatial effects
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Figure D4: ZIP geoadditive model. Kernel density estimates of complete spatial effects
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f δ
1 (x1) = 0.1 exp(0.5x1), f δ

2 (x2) = −0.5 arcsinh(x2),

with covariates x1, x2 as defined in Section 4.1. All other settings are identical to the

ones described in the paper. Similar to the ZINB study, we simulated 250 replications

for sample sizes n = 1, 000 and n = 2, 000. In Figure E5, the mean squared errors

for both samples sizes are summarized in terms of boxplots. Pointwise 95% credible
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Figure E5: NB additive model. log(MSE) of MCMC

intervals can be compared in Figure E6. Figure E7 shows the average of mean esti-

mates of all 250 simulated replications. Similar to the corresponding studies of ZIP

and ZINB results for the NB model can briefly be summed up as follows:

• Bias: Figure E7 indicates that in average we obtain satisfactory mean estimates

for all nonlinear effects. The effects on δ are more difficult to estimate compared

to μ.

• MSE: The logarithmic mean squared errors in Figure E5 of the effects on δ are

higher compared to the ones of μ. Increasing the sample size can reduce the

MSE in all effects.

• Pointwise coverage rates: For the effects on δ and fμ
1 the coverage rates tend

to be higher than the required levels. This can be an indicator for slightly too

wide confidence intervals.
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Figure E6: NB additive model. Pointwise 95% coverage rates of MCMC
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Figure E7: NB additive model. True curves of nonlinear effects together with overall

mean MCMC estimates

17



In conclusion, it can be said that it is a greater challenge to estimate the overdispersion

parameter compared to the expectation of the count process. However, since the levels

of stipulated coverage levels is kept or even higher in most cases, we can expect that

those intervals get wider in areas where effects are difficult to estimate and hence that

they are a good indicator for uncertainties.

E.1.2 Geoadditive Models

In order to extend the additive model with a spatial effect, we proceed as in the

ZIP and ZINB case. The nonlinear effects retain the ones of Section E.1.1. Both

parameters μ and δ are simulated with an additional spatial effect, consisting of an

unstructured part, generated by ε ∼ N(0, 0.125) and a structured part, modeled by a

Markov random field and simulated as

fμ
spat(l) = sin(xcly

c
l ) + εμl

f δ
spat(l) = 0.5xcly

c
l + εδl .

Again, l ∈ {1, . . . , S} describes one of the S = 327 districts in Western Germany.

In Figure E8, the results of the simulated complete spatial effects are visualized. As

before, we performed studies for four different sample sizes n = 1, 000, n = 2, 000,

n = 4, 000 and n = 16, 000, each consisting of 250 replications. Again, we restrict to a

summary for sample sizes n = 1, 000 and n = 4, 000. To sum up the performed studies,

we present the estimated complete spatial effect compared to the true simulated

effect for the two selected sample sizes in Figure E9. Beside this, the log(MSE) in

Figure E10 and the kernel estimates of the complete spatial effects in Figure E11 give

further information about the quality of the inference.

The conclusions from this study are comparable to the ones we already presented

for the corresponding ZIP model: Effects on μ are easier to estimate with respect to

the computed MSE. An increase in the sample size can improve our estimates. The

complete spatial effect on δ is underestimated and too smooth but with a sample size

of n = 4, 000 it gets closer to the true effect.
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Figure E8: NB geoadditive model. Simulated complete spatial effects
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Figure E9: NB geoadditive model. Estimated complete spatial effects
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Figure E10: NB geoadditive model. log(MSE) of nonlinear and complete spatial

effects
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Figure E11: NB geoadditive model. Kernel density estimates of complete spatial

effects
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E.2 Zero-Inflated Negative Binomial Regression

E.2.1 Geoadditive Models

Similar to the structure of the corresponding study for the ZIP model, we performed

simulations for sample sizes n = 1, 000, 2, 000, 4, 000 and 16, 000. All settings are

given in Section 4 of the main paper. The true model is defined as follows:

fμ
1 (x1) = log(x1), fμ

2 (x2) = 0.3x2 cos(x2)

fπ
1 (x1) = sin(x1), fπ

2 (x2) = −0.2x2
2

f δ
1 (x1) = 0.1 exp(0.5x1), f δ

2 (x2) = 0.5 arcsinh(x2),

where the covariates x1 and x2 are obtained as i.i.d. samples from equidistant grids

of steps 0.01, such that for i = 1, . . . , n, we have xi1 ∈ [1, 6] and xi2 ∈ [−3, 3]. The

complete spatial effect is obtained as

fμ
spat(l) = sin(xcly

c
l ) + ελl

fπ
spat(l) = sin(xcl ) cos(0.5y

c
l ) + επl

f δ
spat(l) = 0.5xcly

c
l + εδl .

and εμ, επ, εδ are Gaussian with mean 0 and variance 1/16. Since we make use

of the multilevel structure which was mentioned in Section 3.3, the random effects

are estimated on a second level equation. The resulting complete spatial effects for

all three model parameters are plotted in Figure E12. Our results of the study are

summarized in Figures E13 and E14 where the logarithmic mean-squared errors of

all 250 replications and for both sample sizes are visualized in form of boxplots and

the estimated complete spatial effects can be compared to the simulated effects.

F Model Choice via the Deviance Information Cri-

terion

The deviance information criterion (DIC) [Spiegelhalter et al., 2002] is used very often

for model selection in hierarchical Bayesian models. However, it is difficult to say

what would constitute an important difference in DIC. Very roughly, we make use of
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Figure E12: ZINB geoadditive model. Simulated complete spatial effects
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Figure E13: ZINB geoadditive model. Estimated complete spatial effects
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Figure E14: ZINB geoadditive model. log(MSE) of nonlinear and complete spatial

effects
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Figure E15: ZINB geoadditive model. Kernel density estimates of complete spatial

effects

23



the rule of thumb where differences of more than 10 in DIC might ”‘definitely”’ rule

out the model with the lower DIC, differences between 5 and 10 are ”‘substantial”’

but not definite, whereas differences less than 5 support neither model. In this case,

models with very different estimates, should not only selected by choosing the one

with the lowest DIC.

F.1 Simulation Setup

The true models are defined as in Section 4.2. This means that one generic predictor

η linked to a generic parameter of the ZIP or ZINB distribution is given by

η = f1(x1) + f2(x2) + f spat + ε

= Z1β1 +Z2β2 +Zspatβspat + ε.

Depending on the chosen model, we used the functions

fλ
1 (x1) = fμ

1 (x1) = log(x1), fλ
2 (x2) = fμ

2 (x2) = 0.3x2 cos(x2)

fπ
1 (x1) = sin(x1), fπ

2 (x2) = −0.2x2
2

f δ
1 (x1) = 0.1 exp(0.5x1), f δ

2 (x2) = 0.5 arcsinh(x2),

where the covariates x1 and x2 are obtained as i.i.d. samples from equidistant grids

of steps 0.01, such that for i = 1, . . . , n, we have xi1 ∈ [1, 6] and xi2 ∈ [−3, 3]. The

complete spatial effect is obtained as

fλ
spat(l) = fμ

spat(l) = sin(xcl y
c
l ) + εl

fπ
spat(l) = sin(xcl ) cos(0.5y

c
l ) + επl

f δ
spat(l) = 0.5xcly

c
l + εδl .

and ελ, εμ, επ, εδ are Gaussian with mean 0 and variance 1/16.

To validate the ability of the DIC to find the best model in geoadditive structured

regression models for responses with NB, ZIP or ZINB distribution, we reestimated

different misspecified versions of each of the three simulated models, compare Table F1

for a scheme of all tested candidates. All models are replicated 250 times for sample

sizes n = 1, 000 and n = 4, 000 in each model.
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Model Description

ZIP M1 Simulated model

ZIP M2 including an irrelevant linear effect in ηλ

ZIP M3 including an irrelevant nonlinear effect in ηπ

ZIP M4 excluding the relevant complete spatial effect in ηπ

ZIP M5 excluding the relevant complete spatial effect in ηλ

ZIP M6 including the relevant nonlinear effect of x1 in ηπ linearly

NB M1 Simulated model

NB M2 including an irrelevant linear effect in ημ

NB M3 including an irrelevant nonlinear effect in ηδ

NB M4 excluding the relevant complete spatial effect in ηδ

NB M5 excluding the relevant complete spatial effect in ημ

NB M6 including the relevant nonlinear effect of x1 in ηδ linearly

ZINB M1 Simulated model

ZINB M2 including an irrelevant linear effect in ημ

ZINB M3 including an irrelevant nonlinear effect in ηδ

ZINB M4 excluding the relevant complete spatial effect in ημ

ZINB M5 excluding the relevant complete spatial effect in ηδ

ZINB M6 including the relevant nonlinear effect of x1 in ημ linearly

Table F1: Description of estimated models

F.2 Results

Table F2 displays the percentage of times where the true/misspecified model was

selected or non of the models would be preferred with the decision rule defined before.

For all ZIP models, it can be stated that the false model is never selected by DIC

with the selection criterion defined before. In case of the NB model there is one

of 250 replications where for sample size n = 1, 000 the differences in DIC is in

the range of 15 and in favor of the false model, applying the predefined rule, if an

irrelevant nonlinear effect is added. In case of the ZINB model there are 11 such

cases. One explanation is that the sample size n = 1, 000 is relatively small compared

to the number of parameters that have to be estimated. Another reason is that the

additional nonlinear effect was simulated in the interval [−1, 1] which is similar to the
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Model comparison Select true model indecisive select misspecified model

ZIP M1 vs ZIP M2 0%/0% 100%/100% 0%/0%

ZIP M1 vs ZIP M3 0%/0% 100%/100% 0%/0%

ZIP M1 vs ZIP M4 64%/100% 36%/0% 0%/0%

ZIP M1 vs ZIP M5 100%/100% 0%/0% 0%/0%

ZIP M1 vs ZIP M6 19.2%/98.8% 80.8%/1.2% 0%/0%

NB M1 vs NB M2 0%/0% 100%/100% 0%/0%

NB M1 vs NB M3 0%/0% 99.6%/100% 0.4%/0%

NB M1 vs NB M4 62.8%/100% 37.2%/0% 0%/0%

NB M1 vs NB M5 100%/100% 0%/0% 0%/0%

NB M1 vs NB M6 8.8%/62% 91.2%/38% 0%/0%

ZINB M1 vs ZINB M2 2.8%/0% 92.8%/100% 4.4%/0%

ZINB M1 vs ZINB M3 0%/0% 100%/100% 0%/0%

ZINB M1 vs ZINB M4 11.2%/100% 88.8%/0% 0%/0%

ZINB M1 vs ZINB M5 20.4%/75.6% 79.6%/24.4% 0%/0%

ZINB M1 vs ZINB M6 98.8%/100% 1.2%/0% 0%/0%

Table F2: Relative amount in percent of the decision made by DIC for

n = 1, 000/4, 000 in the NB, ZIP and ZINB model

true covariate values. Furthermore it can stated the following:

• Included irrelevant effects: In all models for the different distributions (except

of the cases mentioned above) adding an additional, irrelevant effect in the

predictor of one of the model parameters yields no DIC differences greater than

10 such that the DIC is indecisive between the two models. However, one can

argue that in such a case one would either decide for the sparse model, which is

the true model or one would usually try to take into account another criterion.

In particular, a covariate can be seen as irrelevant or not significant if the

corresponding Bayesian credible interval contains zero. Applying this rule, the

irrelevant effect would be excluded in at least 85% of all tested models and for

all distributions where an irrelevant variable was included.

• Omitted relevant effects: Here we have to distinguish between the different

sample sizes n = 1, 000 and n = 4, 000. In the latter case, the DICs have a
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difference greater than 10 in favor of the true model such that with our decision

rule we would choose the correct model in at least 75.6% of the replications. In

the ZIP and NB model, the true model would even be selected in 100%. For a

smaller sample size of n = 1, 000, it depends on the parameter where a effect

is omitted. But in all these models in at least 11.2% we would prefer the true

model whereas in the remaining cases the DIC is indecisive.

• Wrong specification: We also simulated one model for each distribution where

in one of the parameter specifications a nonlinear effect was included linearly.

Depending on the parameter and the distribution in some or most cases the

true model would be selected.
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Abstract
Frequent problems in applied research that prevent the application of the classical
Poisson log-linear model for analyzing count data include overdispersion, an ex-
cess of zeros compared to the Poisson distribution, correlated responses, as well as
complex predictor structures comprising nonlinear effects of continuous covariates,
interactions or spatial effects. We propose a general class of Bayesian generalized ad-
ditive models for zero-inflated and overdispersed count data within the framework
of generalized additive models for location, scale and shape where semiparametric
predictors can be specified for several parameters of a count data distribution. As
special instances, we consider the zero-inflated Poisson, the negative binomial and
the zero-inflated negative binomial distribution as standard options for applied work.
The additive predictor specifications rely on basis function approximations for the
different types of effects in combination with Gaussian smoothness priors. We deve-
lop Bayesian inference based on Markov chain Monte Carlo simulation techniques
where suitable proposal densities are constructed based on iteratively weighted least
squares approximations to the full conditionals. To ensure practicability of the infe-
rence we consider theoretical properties like the involved question whether the joint
posterior is proper. The proposed approach is evaluated in simulation studies and
applied to count data arising from patent citations and claim frequencies in car ins-
urances. For the comparison of models with respect to the distribution, we consider
quantile residuals as an effective graphical device and scoring rules that allow to
quantify the predictive ability of the models. The deviance information criterion is
used for further model specification.
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