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Abstract

Generalized additive models for location, scale and shape define a flexible, semi-

parametric class of regression models for analyzing insurance data in which the expo-

nential family assumption for the response is relaxed. This approach allows the actuary

to include risk factors not only in the mean but also in other parameters governing the

claiming behavior, like the degree of residual heterogeneity or the no-claim probability.

In this broader setting, the Negative Binomial regression with cell-specific heterogene-

ity and the zero-inflated Poisson regression with cell-specific additional probability

mass at zero are applied to model claim frequencies. Models for claim severities that

can be applied either per claim or aggregated per year are also presented. Bayesian

inference is based on efficient Markov chain Monte Carlo simulation techniques and

allows for the simultaneous estimation of possible nonlinear effects, spatial variations

and interactions between risk factors within the data set. To illustrate the relevance of

this approach, a detailed case study is proposed based on the Belgian motor insurance

portfolio studied in Denuit and Lang (2004).

Key words: overdispersed count data; mixed Poisson regression; zero-inflated Poisson;

Negative Binomial; zero-adjusted models; MCMC; probabilistic forecasts.

1



1 Introduction

Calculations of motor insurance premiums are based on detailed statistical analyses

of large data bases maintained by insurance companies, recording individual claim

experience. The actuarial evaluation relies on a statistical model incorporating all

the available information about the risk. Premiums then often vary by the territory

in which the vehicle is garaged, the use of the vehicle (driving to and from work

or business use) and individual characteristics (such as age, gender, occupation and

marital status of the main driver of the vehicle, for instance). If the policyholders

misrepresent any of these classification variables in their declaration, they are subject

to loss of coverage when they are involved in a claim. There is thus a strong incentive

for accurate reporting of risk characteristics making insurance data reliable.

It is now common practice to achieve a priori risk classification with the help of Gen-

eralized Linear Models (GLMs), see, e.g., Denuit et al. (2007) for an introduction in

relation with motor insurance. They are so called because they generalize the clas-

sical linear model based on the Normal distribution to similar regression models for

Poisson, Binomial, Gamma or Inverse-Gaussian responses, for instance. The main

drawback of GLMs is that covariate effects are modeled in the form of a linear pre-

dictor. This is not a problem for categorical explanatory variables coded by means of

binary variables, but a strong restriction for continuous explanatory variables which

may have a nonlinear effect on the score. It has been common practice in insurance

companies to model possibly nonlinear effects by means of polynomials. However, it

is now well documented that low-degree polynomials are often not flexible enough to

capture the variability in the data and that increasing their degree produces unstable

estimates, especially for extreme values of the covariates. Although banding results in

a loss of information, a model employing a banded version of a continuous covariate

is sometimes considered more practical than one which employs the (untransformed)

continuous variable. However, there is no general rule to determine the optimal choice

of cutoffs so that banding may bias risk evaluation.

Among continuous covariates, geographic area plays a particular role. It can either be

seen as a function of two coordinates if exact locations are available or a function of

an administrative areal variable if spatial information is aggregated for confidentiality
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reasons. In any case, actuaries wish to estimate the spatial variation in risk premium

and to price accordingly. Spatial zip code methods for insurance rating attempt to

extract information which is in addition to that contained in standard factors (like age

or gender for instance). With the regression models discussed in the present paper,

the effect of continuous and spatial covariates is modeled on the score scale by means

of smooth, unspecified functions estimated from the data.

Generalized additive models (GAMs) as developed in Hastie and Tibshirani (1990)

and popularized by Wood (2006) provide a convenient framework to overcome the

linearity assumptions inherent to GLMs when smooth effects of continuous covariates

need to be included in an additive predictor. Inference can be realized by cross

validation as in Wood (2004), by mixed model representations as in Ruppert et al.

(2003), Fahrmeir et al. (2004) and Wood (2008) or by Markov chain Monte Carlo

(MCMC) simulations as in Brezger and Lang (2006), Julion and Lambert (2007) and

Lang et al. (2013).

The framework of generalized additive models for location, scale and shape

(GAMLSS) introduced by Rigby and Stasinopoulos (2005) allows to extend GAMs

to more complex response distributions where not only the expectation but multiple

parameters are related to structured additive predictors with the help of suitable link

functions. Structured additive regression relies on a unified representation of different

model terms like parametric linear effects, smooth nonlinear effects of continuous co-

variates, interaction terms based on varying coefficients and spatial effects (Fahrmeir

et al., 2013, Brezger and Lang, 2006). In particular, zero-inflated, skewed and zero-

adjusted distributions can be embedded in this framework as special cases where

all occurring parameters are related to regression predictors and may depend on a

complex covariate structure. All these model terms rely on a unifying representation

based on non-standard basis function specifications in combination with quadratic

penalties in a frequentist formulation or Gaussian priors in a Bayesian approach.

In this broader setting, the Poisson assumption for claim frequencies made in De-

nuit and Lang (2004) is replaced with a mixed Poisson one, with Gamma distributed

random effect (yielding the Negative Binomial distribution with cell-specific hetero-

geneity) or Bernoulli distributed random effect (yielding the zero-inflated Poisson

distribution with cell-specific additional probability mass at zero).
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In addition to claim frequencies, we also consider regression models for claim sever-

ities. Much attention has been paid in the actuarial literature to find suitable dis-

tributions to model claim sizes; see for example Klugman et al. (2004). Whereas

Denuit and Lang (2004) studied claim frequencies and claim severities separately, we

consider in this paper the so-called zero-adjusted models that allow to account for

zeros in the analysis of the amount of loss directly without resorting to models for

claim frequencies. Zero-adjusted distributions combine a continuous distribution on

the positive real line and a point mass at zero, such that the probabilities for a claim

and quantiles of the claim size distribution can be estimated in one model. Zero-

adjusted models are in the line of Jørgensen and Paes de Souza (1994) and Smyth

and Jørgensen (2002) where the zero claims are included using the Tweedie distribu-

tion. However, this model has the disadvantage that the probability at zero cannot

depend on covariates whereas here, this key actuarial indicator is allowed to vary

according to risk characteristics.

To select an appropriate response distribution and to specify several predictors that

correspond for instance to variances, skewness or overdispersion of the distribution,

we rely mainly on the deviance information criterion (DIC) of Spiegelhalter et al.

(2002) whose performance in Bayesian count data regression within the framework of

GAMLSS has been tested in Klein et al. (2013a). The choice of the distribution will

be supported by normalized quantile residuals (Dunn and Smyth, 1996) and proper

scoring rules (Gneiting and Raftery, 2007).

We highlight the advantages of complex Bayesian count data, skewed and zero-

adjusted regression models for insurance claims data with a detailed analysis of a

Belgian data set with more than 160,000 policies. Specifically,

• we consider the Poisson, zero-inflated Poisson and Negative Binomial regression

models for claim frequencies, where suitable predictors are specified for the

expected number of claims as well as for the probability of the structural zeros

in zero-inflated Poisson and for the scale parameter of the Negative Binomial

distribution.

• for claim severities, we extend the continuous models to zero-adjusted versions

of the Gamma, Inverse-Gaussian and LogNormal distributions, we estimate the

corresponding location and scale or shape parameters as well as the probability
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of a claim in terms of relevant covariates in an additive fashion.

• inference in all model formulations is based on iteratively weighted least squares

approximations to the full conditionals in Markov chain Monte Carlo (MCMC)

simulation techniques as suggested in Gamerman (1997) or Brezger and Lang

(2006) and extended to the general framework of GAMLSS by Klein et al.

(2013b).

• we benefit from a numerically efficient implementation in the free open software

BayesX also available via the R add-on package R2BayesX.

• compared to frequentist GAMLSS approaches, the approach adopted here di-

rectly includes the choice of smoothing parameters in the estimation run and

provides valid confidence intervals which are difficult to obtain from asymptotic

maximum likelihood theory.

Our approach to zero-inflated, skewed and zero-adjusted models has therefore the

full flexibility in the parametric distribution assumption. The structured additive

modeling of all parameters allows to focus on specific aspects of the data that go

beyond the mean. In particular,

• the separate modeling of the probability mass at zero as a function of the

observable characteristics allows for an accurate analysis of this key actuarial

indicator.

• cell-specific residual heterogeneity in the Negative Binomial model allows for

more accurate risk predictions when deriving the predictive distributions of

future claims.

• zero-augmented models for the annual claim amounts are in accordance with

the individual model of risk theory so that the actuarial analysis benefits from

the numerous tools developed in that setting.

The claim frequencies models considered in the present paper have already been ap-

plied to insurance data. See, e.g., Yip and Yau (2005) or Boucher et al. (2006). How-

ever, previous applications of Negative Binomial or zero-inflated Poisson regression

models to insurance data only allowed for linear effects of the covariates or applied
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preliminary banding techniques to transform continuous covariates into categorical

ones. Zero-adjusted Gamma and Inverse-Gaussian models have been proposed by

Heller et al. (2006), Bortoluzzo et al. (2011) and Resti et al. (2013) but their analy-

sis only allowed for linear effects of the covariates, too. See also Heller et al. (2007)

for a related model extending the Tweedie construction beyond the Poisson-Gamma

setup. The present paper innovates in that nonlinear effects are allowed using the

efficient inference techniques developed by Klein et al. (2013a). The effect of contin-

uous covariates on the score are quantified by means of unknown smooth functions

that do not need to be specified a priori under parametric form but are estimated

directly from the data.

Let us now briefly present the data used to illustrate the techniques described in this

paper. The data set is the one analyzed in Denuit and Lang (2004) by means of

Poisson and LogNormal regression techniques. It relates to a Belgian motor third-

party liability insurance portfolio observed during the year 1997, comprising more

than 160,000 policies. The following information is available on an individual basis.

As far as policyholders’ characteristics are concerned, we know gender, age, place of

residence and use of the car. Concerning the insured vehicle, we have its ancientness,

the type of fuel, its power and whether the vehicle belongs to a fleet. About the

contract, we know the type of coverage (compulsory motor third party liability only,

or motor third party liability together with some optional coverages) and the level

occupied in the former Belgian bonus-malus scale. In addition to these covariates,

the number of claims filed by each policyholder during 1997, the exposure-to-risk

from which these claims originated, as well as the resulting total claim amount are

given. See Table 1 for a list of available explanatory variables with some descriptive

statistics.

Notice that the -1/+1 coding has been used for the binary covariates in Table 1

whereas actuaries usually resort to a 0/1 coding, with 0 for the most populated class

taken as reference (see, e.g., Denuit and Lang, 2004). This is because the -1/1 coding

often has a positive mixing behavior in MCMC. Of course, the actuary can easily

revert to the standard 0/1 coding, if needed, by an appropriate linear transformation

of the regression parameters. The extent of coverage has been coded in a similar way
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Continuous covariates

variable description mean std dev. min/max

ageph age of policyholder 47 14.83 18/78

agec age of vehicle 7.35 4.12 0/30

power engine power 56.01 19.02 10/243

Binary covariates

variable description levels proportions in %

fuel fuel oils gas=1/diesel=-1 69.1/30.9

use use of vehicle work=1/private=-1 4.8/95.2

fleet belongings to a fleet yes=1/no=-1 3.2/96.8

sex gender of policyholder male=1/female=-1 73.5/26.5

Categorical covariates

variable description levels proportions in %

coverage guarantees subscribed TPL only (1) 58.2

TPL+limited material 28.3

damage and theft (2)

TPL+comprehensive damage (3) 13.6

bm bonus-malus level 0,. . . ,22

district spatial information 1,. . . ,589

Table 1: Covariates available in the car insurance data set.
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by means of two auxiliary covariates cov1 and cov2 defined as follows:

cov1 = I[coverage = 1]− I[coverage = 3]

cov2 = I[coverage = 2]− I[coverage = 3]

where I[·] denotes the indicator function.

Even if it is common to include the gender of the main driver in the actuarial ratemak-

ing, some states have banned the commercial use of this rating factor (as in EU mem-

ber countries, for instance). Here, we assume that we deal with the technical price

list and we do not discuss the various adaptations made to produce the commercial

price list.

The remaining sections are organized as follows: In Section 2 we introduce the speci-

fication of Bayesian models for analyses of claim frequencies as well as severities. We

describe the underlying inference and we give guidelines for model choice. Sections

3 and 4 deal with claim frequency and claim severity models, respectively. The ap-

plicability of the proposed models is demonstrated on the Belgian data set presented

before. The analysis we conduct shows major improvements compared to existing

approaches and reveal new features of insurance data. Conclusions are given in the

last Section 5.

2 Regression Models

2.1 Generalized additive models for location scale and shape

(GAMLSS)

Suppose we have observations (yi,xi), i = 1, 2, . . . , n on a response variable Y and a

vector of covariates x. Here, Y may be either the claim size or the claim frequency.

The vector x is split up into a subset of continuous covariates, another subset of

categorical covariates, and geographical information. We assume that there are p

continuous covariates x1, . . . , xp, spatial region s, and that the remaining categorical

explanatory variables are coded by means of a vector z0 of covariates.

GAMLSS require a parametric distribution assumption for the response variable,

involving several parameters represented as functions of explanatory variables. In
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GAMLSS the exponential family distribution assumption for the response Y is relaxed

so that the actuarial analysis is no more restricted to the distributions used in the

classical GLM setting. The systematic part of the model is expanded compared to

GLMs to allow modeling not only the mean (or location) but other parameters of the

distribution of the response as linear and/or nonlinear parametric and/or additive

non-parametric functions of explanatory variables.

More precisely, the model is built as follows: The form of the distribution assumed for

the response variable can be very general. The only restriction is that the individual

contribution to the log-likelihood and its first two derivatives with respect to each

of the parameters must be computable. Known monotonic link functions relate the

distribution parameters to explanatory variables. Specifically, distribution parameters

ϑ1, ϑ2, . . . are decomposed into hk(ϑk) = ηk for some known link function hk where

the score ηk is assumed to be of a semi-parametric additive form

ηk = z′0β0k +

p∑
j=1

fkj(xj) + fk,spat(s)

where the functions fkj express the effect of continuous covariates on the score scale,

fk,spat accounts for spatial variations in the risk distribution, z′0β0k contains paramet-

ric, linear effects of covariates.

All the distribution parameters can be decomposed on the score scale as linear, non-

linear parametric, non-parametric (smooth) functions or spatial variations of the ex-

planatory variables. The parameters are estimated within the GAMLSS framework

by maximizing a penalized likelihood function. More details on how the penalized log

likelihood is maximized are given in Rigby and Stasinopoulos (2005). The available

distributions include all those commonly used in actuarial analyses. See Table 1 in

Stasinopoulos and Rigby (2007) for an exhaustive list.

2.2 Bayesian structured additive regression

Hereafter, we give a brief overview of the statistical concepts used in the GAMLSS

model terms. A more tutorial style introduction is given in Denuit and Lang (2004)

and in the textbook by Fahrmeir et al. (2013). In structured additive regression

each vector f containing the evaluations of a function f at the observed covariates

is approximated in terms of appropriate basis functions which allows the unified
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representation

f = Zβ

where Z is a design matrix arising from evaluations of the basis functions and β is

the vector of regression coefficients.

Each predictor from the previous section can therefore be expressed in terms of

η = Z0β0 +Z1β1 + . . .+Zpβp +Zspatβspat

where for simplicity we drop the parameter name.

In a Bayesian framework a standard smoothness prior is a (possibly improper) Gaus-

sian prior of the form

p(β|τ 2) ∝
(

1

τ 2

)rank(K)/2

exp

(
− 1

2τ 2
β′Kβ

)
· I[Aβ = 0] (1)

where β may be any of the vectors β0,β1, . . . ,βp,βspat. The key components of

the prior are the penalty matrix K, the variance parameter τ 2 and the constraint

Aβ = 0.

The structure of the penalty or prior precision matrix K depends on the covariate

type and on prior assumptions about smoothness of f , see below. Usually, the penalty

matrix in our examples is rank deficient resulting in a partially improper prior. The

amount of smoothness is governed by the variance parameter τ 2: The smaller the

variance, the smoother the function estimates and the other way around. A conjugate

inverse Gamma prior is employed for τ 2 with small values for the hyperparameters

resulting in an uninformative prior on the log scale.

For instance, for modeling the nonlinear effect f(ageph) we apply Bayesian

P(enalized)-splines as proposed in Lang and Brezger (2004). P-splines assume that

the unknown functions can be approximated by a polynomial spline which can be

written in terms of a linear combination of B-spline basis functions. Hence, the

columns of the design matrix Z are given by the B-spline basis functions evaluated

at the observations. Lang and Brezger (2004) propose to use first or second order

random walks as smoothness priors for the regression coefficients, i.e.

βl = βl−1 + ul, or βl = 2βl−1 − βl−2 + ul, (2)

with Gaussian centered errors ul with common variance τ 2
j and diffuse priors p(β1) ∝

const, or p(β1) and p(β2) ∝ const, for initial values. This prior is of the form (1) with

10



penalty matrix given by K = D′D, where D is a first or second order difference

matrix.

A common way to deal with the spatial covariate distr is to define a neighborhood

structure ∂s on the set {1, . . . , 589} of districts in Belgium and to assume that neigh-

boring regions are similar. In our case neighborhoods are simply given by common

borders. The design matrix is an indicator matrix connecting individual observations

with corresponding regions, i.e. the entry (i, s) of the matrix Z is one if observation

i belongs to region s and zero otherwise. To implement spatial smoothness, K is

chosen as an adjacency matrix indicating which regions are neighbors of each others,

see Rue and Held (2005) for details. The simplest smoothness prior is called Markov

random field. In this case, given βr, r 6= s and hyperparameter τ 2, βs is Normally dis-

tributed with mean
∑

r∈∂s
1

Ns
βr and variance τ2

Ns
, where Ns is the number of neighbors

of region s. In consequence, the conditional mean of βs given all other coefficients is

the average of the neighborhood regions. Further background about Markov random

fields can be found in Fahrmeir et al. (2013).

Especially in the application on claim sizes, it is useful to split up the effect fspat

into a spatially structured (smooth) effect fstr and a spatially unstructured effect

funstr, i.e. fspat = fstr + funstr. The unstructured part is modeled by independent and

identically distributed Gaussian random effects, i.e. Z is again an indicator matrix

as in the Markov random field and β is multivariate Normal with zero mean and

diagonal covariance matrix.

The type of modeling discussed so far can be embedded in a computationally very

powerful multilevel version of structured additive regression models where regression

coefficients may themselves depend on covariates and can be modeled by a structured

additive predictor. We refer the reader to Lang et al. (2013) for details. Bayesian

inference is based on highly efficient Markov chain simulation based on iteratively

weighted least squares proposals as suggested by Gamerman (1997) or Brezger and

Lang (2006) and for the models at hand in a recent paper by Klein et al. (2013b).

2.3 Model choice and predictive ability

Since we are dealing with many (possibly nonlinear) covariate effects and usually

several additive predictors, adequate model choice plays a crucial role when apply-
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ing GAMLSS. Unfortunately, many diagnostic tools in Bayesian inference based on

MCMC are only useful for restricted classes of simple models with just a few pa-

rameters. Klein et al. (2013b) proposed a practical procedure for model selection in

Bayesian GAMLSS to find a suitable response distribution as well as parsimonious

specifications for all model predictors. We mainly follow their proposals since they

do not only focus on improving the fit to the data but also the quality of predictions

for new observations.

A first measure for the model fit that takes the estimated model complexity into

account is the deviance information criterion (DIC) proposed by Spiegelhalter et

al. (2002) that has become quite popular in Bayesian statistics as it can easily

be computed from the MCMC output. Let ϑ denote the vector of model param-

eters. If ϑ(1), . . . ,ϑ(T ) is an MCMC sample from the posterior distribution of model

parameters, then the DIC is based on the following two quantities: The deviance

D(ϑ) = −2 log(p(y|ϑ)) of the model that reflects the fit of the data and model com-

plexity through the effective number of parameters in the model pD. As derived by

Spiegelhalter et al. (2002), the latter is given by the difference of the posterior mean

of the deviance and the deviance of the posterior means, i.e. pD = D(ϑ) − D(ϑ),

where

D(ϑ) =
1

T

T∑
t=1

D
(
ϑ(t)
)

and ϑ =
1

T

T∑
t=1

ϑ(t).

The DIC is then defined as

DIC = D(ϑ) + 2pD = 2D(ϑ)−D(ϑ̄)

indicating a close relationship to the frequentist Akaike information criterion that

provides a similar compromise between fidelity to the data and model complexity.

A rough rule of thumb says that DIC differences of 10 and more between two com-

peting models indicate the model with the lower DIC to be superior. For fixed dis-

tributional assumptions for the response, we use the DIC for variable selection in all

predictors, as already described in the previous section. If for one distribution with

different parameter specifications several models have similar DIC with differences

smaller than 10, we usually decide for the sparser model in the sense that additional

non-significant effects are excluded from the predictors. Our variable selection typi-

cally starts with the examination of the location parameter of the distributions. After
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having a reasonable predictor for this main parameter, we continue in determining

the remaining predictors by a stepwise search. Note that the performance of the DIC

in count data models has been evaluated in the supplement of Klein et al. (2013a)

and rated to provide valid guidance.

For discriminating between competing response distributions, we rely on normalized

quantile residuals and proper scoring rules. Stasinopoulos et al. (2008) suggested

normalized quantile residuals as a graphical device. For continuous response data,

the quantile residual relies on ui = Fi(yi|ϑ̂), where Fi is the cumulative distribution

function estimated for the ith individual, ϑ̂ contains all estimated model parameters

and yi is the corresponding observation. If the estimated Fi is close to the true dis-

tribution of yi then ui approximately follows a uniform distribution. To use standard

quantile-quantile plots for the graphical investigation of the model fit, the residual

is finally defined as r̂i = Φ−1(ui) where Φ−1 is the inverse cumulative distribution

function of the standard Normal distribution. Hence, ri is approximately standard

Normal if the estimated model is close to the true one. For discrete response dis-

tributions, the definition has to be slightly extended and ui is defined as a random

number from the uniform distribution on the interval [Fi(yi − 1|ϑ̂), Fi(yi|ϑ̂)]. In any

case, the model fit can be evaluated by means of usual quantile-quantile plots: The

closer the residuals to the bisecting line, the better the fit to the data.

Gneiting and Raftery (2007) propose proper scoring rules as summary measures for

the evaluation of probabilistic forecasts based on the predictive distribution and the

observed realizations. In our analysis, we apply a selection of these scores that have

been assigned to the general framework of regression in GAMLSS by Klein et al.

(2013b). There are several candidates for the score function S, depending on whether

the response variable is discrete, continuous or mixed discrete-continuous. In all three

cases, we use the logarithmic, quadratic and spherical score which are all proper

scoring rules meaning that if Gi is the true distribution of the response yi then

S(Gi, Gi) ≥ S(Gi, Fi) holds for all Fi 6= Gi. We refer the reader to Gneiting and

Raftery (2007) for further details on these scores. In practice, the predictive distribu-

tions Fi for observations yi are obtained by ten-fold cross validation, that is, 10% of

the data set is left out and the parameters of the distributions are predicted based on

the estimations of the remaining 90%. The scores are then the sum of individual con-
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tributions, where higher scores deliver better probabilistic forecasts when comparing

different models.

Since the total score is only a summary measure for the complete predictive distri-

bution, it does not allow to assess which parts of the true response distribution are

reflected well in the model and which aspects differ from the truth. For example,

there may be a distribution that fits the central part of the data well but fails to fit

the tails. In terms of a summarized score, it may then be difficult to distinguish this

behavior from another candidate distribution that differs from the true distribution

slightly over the whole domain. In such a case, it can be helpful to follow Gneiting

and Ranjan (2011) who suggest a quantile decomposition of the quantile score given

by

−2

∫ 1

0

(
I
[
yi ≤ F−1

i (α)
]
− α

) (
F−1
i (α)− yi

)
dα.

In this way, the performance of the distributions can be compared with respect to the

ability to fit specific quantiles of the true distribution. We apply this score later on to

compare distributions for analyzing the claim sizes and to determine claim sizes that

cause the largest deteriorations in the score. The whole integral over the quantile

decomposition leads to the continuous ranked probability score (CRPS) which is also

a proper scoring rule directly formulated in terms of the cumulative distribution

functions while the logarithmic, quadratic and spherical scores are computed from

the densities.

3 Modelling Claim Frequencies: Count Data Re-

gression

3.1 Negative Binomial regression with cell-specific hetero-

geneity

Insurance data often exhibits overdispersion because several important risk attitudes

cannot be observed (swiftness of reflexes, aggressiveness behind the wheel, consump-

tion of drugs, etc.). This can be modeled by the inclusion of a random heterogeneity

factor. Specifically, given Θi = θ, the number of claims Ni reported by policy-

holder i conforms to the Poisson distribution with mean µiθ. Here, we consider that
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Θ1,Θ2,Θ3, . . . are independent and Gamma distributed random variables, with unit

mean and scale parameter δi depending on covariates (so that the heterogeneity may

be specific to risk classes). Therefore we obtain a Negative Binomial (NB) distribution

for Ni, that is,

Pr[Ni = k] =
Γ(k + δi)

Γ(k + 1)Γ(δi)

( µi
δi + µi

)k( δi
δi + µi

)δi
, k = 0, 1, 2, . . . (3)

where Γ(a) =
∫∞

0
exp(−t)ta−1dt for a > 0.

To compare with the results obtained by Denuit and Lang (2004), we also consider

the Poisson regression model for claim counts where Ni obeys the Poisson distribution

with mean λi. Both µ and λ are expressed in terms of frequency scores ηfreq using

log link, i.e. λfreq = exp(ηλfreq) and µfreq = exp(ηµfreq). In both cases, we end up with a

frequency score of the form

fµ1 (ageph) + sex fµ2 (ageph) + fµ3 (agec) + fµ4 (bm) + fµ5 (power) + fµspat(distr) + (zµ)′ β.

where µ is replaced by λ to obtain the frequency score of the Poisson model. Here,

z contains the linear effects fuel , coverage and fleet , an intercept and the logarithm

of the contract periods in days. The other categorical covariates do not significantly

influence the claim frequencies. Recall that in a Bayesian context an effect is seen as

not significant if the zero line is totally contained in the pointwise confidence interval.

The nonlinear functions f1, . . . , f5 are smooth estimates of continuous covariates. As

gender and age often interact, in the sense that the effect of age on the average claim

frequency is different for males than for females (typically, young male drivers are

more dangerous than young female drivers), we allow for such an effect in our study.

Formally, f2 is an interaction between the gender of the policyholder and age. With

the coding used in this paper, this means that the effect of age on the score scale

is f1(ageph) + f2(ageph) for males and f1(ageph) − f2(ageph) for females. Then,

fspat captures the spatial variation of the claim frequencies. Notice that we did not

include the logarithmic contract period in days as an offset but included it as a linear

covariate. If the assumption of an offset is justified then the corresponding estimated

coefficient should be close to one.

The scale parameter δfreq is expressed in terms of a score ηδfreq by means of a log link,

i.e. δfreq = exp(ηδreq). We start from a model with the intercept, only. Based on the

deviance information criterion (DIC) and significances in effects, we included step by
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step further covariates and estimated in this way several models with different score

structures. This finally gives an optimal score of the form

ηδfreq = f δspat(distr) +
(
zδ
)′
βδ,

with zδ consisting of fuel , coverage, an intercept and the logarithm of the contract

periods in days.

Estimates of linear effects are given in Table 2 for the Poisson model and in Table 3

for the Negative Binomial regression model. Considering the values displayed in these

two tables, we see that the Negative Binomial and Poisson regression models produce

almost identical estimations for the linear part of the scores ηλfreq and ηµfreq. We see from

the estimations of βλ1 and βµ1 that gasoline vehicles appear to be less risky compared

to diesel ones. This effect prevails in Belgium and is often explained by the higher

annual mileage for diesel vehicles which are usually driven over longer distances to

compensate the higher buying cost of the car by the cheaper price of fuel oils. The

estimated values of βλ2 and βµ2 suggest that belonging to a fleet decreases the expected

claim number. The estimated values of (βλ3 , β
λ
4 ) and (βµ3 , β

µ
4 ) reveal that buying only

TPL increases the frequency score by βλ3 or βµ3 (and thus the expected claim number)

whereas extending the coverage lowers it (by βλ4 or βµ4 for TPL+limited material

damage and theft and by −βλ3 − βλ4 or −βµ3 − β
µ
4 for TPL+comprehensive coverage).

This confirms the tendency for drivers subscribing more guarantees to report less

third-party liability claims. Considering the estimated βλ5 and βµ5 , we see that the

exposure-to-risk is multiplied by a coefficient strictly less than 1. This contradicts

the widely used offset construction which tends to grant too much importance to

this effect and questions the use of calendar time as the appropriate measure of risk

exposure, instead of the distance travelled (which is of course difficult to measure

accurately and subject to misreporting, but this may well change if pay-as-you-drive

systems become more popular).

In Figures 1 and 2, the estimated nonlinear effects on the mean λ in the Poisson

regression case and on the mean µ in the Negative Binomial regression model are

plotted together with 80% and 95% pointwise credible intervals. Vertical stripes

indicate the relative amount of data of the corresponding covariate values. Again,

we see that the estimated nonlinear effects are almost identical in the Poisson and

Negative Binomial regression models. Let us summarize the main findings as follows:
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The effect of age on the score scale is depicted in Figure 1. The estimated functions

fλ1 , fλ2 , fµ1 and fµ2 are displayed there. The interaction age-gender is significant and

reveals the higher claim frequencies for young, unexperienced drivers. This effect

is much more pronounced for young male drivers. The total estimated age effect

fλ1 + fλ2 or fµ1 + fµ2 for males and fλ1 − fλ2 or fµ1 − f
µ
2 for females is also described in

Figure 1. Ages 35-45 correspond to the reference level for males whereas females are

subject to a peak around age 45. This phenomenon is usually attributed to accidents

caused by children learning to drive behind the wheel of their mother’s car. Also,

it was not uncommon in Belgium during the late 1990s to ask older relatives, often

the mother, to subscribe the policy in order to avoid premium surcharges imposed to

young drivers. Male drivers around 70 reveal a very low risk level. This beneficial

effect disappears at older ages (after age 80, the analysis suggests an increasing risk

level but no firm conclusion can be drawn as the right part of the estimated f1 + f2

does not significantly differ from 0). The risk seems to stay constant after age 60

for female drivers. The other estimated nonlinear effects are displayed in Figure

2. Considering the estimation of f3, we see that vehicles up to 3 years seem to be

riskier, which can be explained by the first annual mechanical check up imposed by

the Belgian state at that time. Drivers with high annual mileage tend to sell their

cars after 3 to 4 years, which explains the shape in f3. Occupying a higher level in

the bonus-malus scale results from a worse claim frequency experience so that f4 is

increasing, as expected. Also, f5 appears to be increasing so that more powerful cars

tend to cause more accidents. There is a clearly visible kink around power 50, with

a close-to-linear behavior before and after that value.

Figure 3 depicts the estimated spatial effects on λ and µ. The estimated spatial

variation in λ and µ is very similar for the Poisson and Negative Binomial regression

models. The structured spatial effect clearly indicates the higher risk associated with

the main cities: Brussels area in the center, Antwerp in the North, Liège in the

East and Charleroi in the South. On the contrary, living in the countryside reduces

the expected claim number, like in the Ardenne, South-East. These effects clearly

dominate as shown by the probability plots which isolate the significant effects: The

districts corresponding to significantly negative effects are colored in black, those with

significantly positive effects are colored in white whereas those colored in grey are not
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Figure 1: Posterior mean estimates of nonlinear age effects (centered around zero) on

the expectation parameter together with pointwise 80% and 95% confidence intervals

in the Poisson (left panels) and Negative Binomial models (right panels).
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Figure 2: Posterior mean estimates of nonlinear effects (centered around zero) on the

expectation parameter together with pointwise 80% and 95% confidence intervals in

the Poisson (left panels) and Negative Binomial models (right panels).
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significant (i.e. their 80% confidence interval contains 0).

Considering the numerical results discussed so far, the Poisson and Negative Bino-

mial distributions provide very similar answers. The Negative Binomial regression

model nevertheless comprises and additional scale parameter δ controlling the de-

gree of residual heterogeneity within risk classes. The estimated score can easily be

interpreted from the variance

Var[Θi] =
1

δi
= exp(−ηδfreq)

which measures the cell-specific residual heterogeneity. We see from Table 3 that the

residual heterogeneity tends to be smaller for diesel vehicles compared to gasoline ones

and higher for the vehicles covered in TPL only or in TPL+limited material damage

and theft compared to vehicles with comprehensive coverage. These categories have

lower expected claim frequencies but tend to be less homogeneous. Considering the

spatial variation in δ displayed in Figure 4, we see that the residual heterogeneity

seems to be higher in the North-West part of the country, especially along the North

Sea coast. However, most districts have unsignificant spatial effects as shown by the

accompanying probability plot. These new findings are particularly interesting as the

a posteriori corrections must be more severe for higher residual heterogeneity, i.e. the

past claim experience must play a more important role for predicting future claims

when Var[Θi] gets larger. We come back to this issue in Section 3.4.2.

Parameter mean standard error 2.5% quantile median 97.5% quantile

βλ0 (const) -5.14 0.14 -5.42 -5.14 -4.87

βλ1 (fuel) -0.09 0.01 -0.11 -0.09 -0.08

βλ2 (fleet) -0.06 0.02 -0.10 -0.06 -0.02

βλ3 (cov1) 0.07 0.01 0.04 0.07 0.09

βλ4 (cov2) -0.04 0.01 -0.06 -0.04 -0.02

βλ5 (risk) 0.57 0.02 0.53 0.57 0.61

Table 2: Summary of estimated linear effects for λ in the Poisson model.

3.2 Zero-inflated Poisson regression model

Often, the number of observed zeros in insurance data sets is much larger than under

the Poisson assumption. This may be explained by the reluctance of some insured
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Figure 3: Estimated posterior mean spatial effects fspat (centered around zero) on

the mean value of the Poisson (top panels) and Negative Binomial (bottom panels)

models together with corresponding probability plots.
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NB: Estimated spatial effect on δ
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Figure 4: Estimated posterior mean spatial effect fspat (centered around zero) in the

scale parameter of the Negative Binomial model, together with the corresponding

probability plot.

Parameter mean standard error 2.5% quantile median 97.5% quantile

βµ0 (const) -5.16 0.15 -5.44 -5.16 -4.86

βµ1 (fuel) -0.09 0.01 -0.11 -0.09 -0.08

βµ2 (fleet) -0.06 0.02 -0.11 -0.06 -0.02

βµ3 (cov1) 0.07 0.01 0.04 0.07 0.09

βµ4 (cov2) -0.04 0.01 -0.06 -0.04 -0.01

βµ5 (risk) 0.58 0.02 0.53 0.58 0.61

βδ0 (const) -1.63 0.95 -3.46 -1.63 0.37

βδ1 (fuel) -0.24 0.10 -0.44 -0.25 -0.06

βδ3 (cov1) -0.39 0.26 -0.91 -0.34 -0.03

βδ4 (cov2) -0.50 0.29 -1.17 -0.44 -0.06

βδ5 (risk) 0.52 0.16 0.16 0.54 0.81

Table 3: Summary of estimated linear effects for µ and δ in the Negative Binomial

model.
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drivers to report their accident: Due to bonus-malus mechanisms, some claims are not

filed to the company because policyholders think it is cheaper for them to defray the

third party (or to pay for their own costs in first party coverages) to avoid premium

surcharges. Deductibles also increase the proportion of zeros, since small claims are

not reported by insured drivers. For more details, see Denuit et al. (2007).

The Negative Binomial regression model indirectly accounts for this phenomenon as

it inflates the probability mass at zero compared to the Poisson law with the same

mean. Another, more direct approach consists in using a mixture of two distributions:

A degenerated distribution for the zero case combined with a Poisson distribution,

giving the zero-inflated Poisson (ZIP) distribution with probability mass function

Pr[Ni = k] =

πi + (1− πi) exp(−λi) for k = 0

(1− πi) exp(−λi)λ
k
i

k!
for k = 1, 2, ...

(4)

where λi is the Poisson parameter and πi is the additional probability mass at zero.

The two first moments of the ZIP distribution are

E[Ni] = (1− πi)λi

Var[Ni] = E[Ni] + E[Ni](λi − E[Ni]) = (1− πi)λi + πi(1− πi)λ2
i .

We see that both πi and λi enter the expected claim number, which differs from the

Poisson and Negative Binomial cases examined before (where the mean was one of

the parameters linked to covariates) and makes the interpretation of the results more

cumbersome. The variance clearly exceeds the mean so that the ZIP model accounts

for the overdispersion generally present in insurance data. Note that the ZIP model

can also be seen as a special case of a mixed Poisson distribution obtained with Θi

equal to 0 or 1 (with respective probabilities πi and 1 − πi) and conditional mean

λiΘi.

Both parameters λ and π are related to structured additive regression predictors

constructed from covariates via suitable link functions. The specification for λfreq =

exp(ηfreq) is the same as before with Poisson and Negative Binomial distributions and

we follow Baetschmann and Winkelmann (2012) who suggest the complementary log

log link for π when the exposure time varies, that is, we specify

πfreq = exp(− exp(ηπfreq)). (5)
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We started from very simple models where πfreq is only estimated by a constant.

Based on the deviance information criterion (DIC) and significances in effects, further

covariates are included step by step. In this way, several models are estimated with

different predictor structures, ending up with the predictor structure

ηπfreq = fπ1 (ageph) + fπspat(distr) + (zπ)′ βπ,

for πfreq, where zπ consists of fuel , an intercept and the logarithm of the contract

period in days.

Estimates of linear effects are given in Table 4. We see that the gasoline vehicles have

a lower λ and a higher π so that both effects agree and tend to decrease the expected

number of claims. Belonging to a fleet reduces λ but does not impact π. Subscribing

to TPL only increases λ compared to when optional coverages are included in the

policy. Note also that risk exposure enters both λ and π, increasing λ but decreasing

π which conforms with intuition.
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Figure 5: Posterior mean estimates of nonlinear age effects (centered around zero)

together with pointwise 80% and 95% confidence intervals in the ZIP model.

In Figures 5 and 6, the estimated nonlinear effects on λ and π are plotted together

with 80% and 95% pointwise confidence intervals. As before, vertical stripes indicate
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Figure 6: Posterior mean estimates of nonlinear effects (centered around zero) to-

gether with pointwise 80% and 95% confidence intervals in the ZIP model.

Parameter mean standard error 2.5% quantile median 97.5% quantile

βλ0 (const) -2.38 0.39 -3.13 -2.37 -1.62

βλ1 (fuel) -0.04 0.02 -0.07 -0.04 0.004

βλ2 (fleet) -0.06 0.02 -0.11 -0.06 - 0.02

βλ3 (cov1) 0.07 0.01 0.04 0.07 0.09

βλ4 (cov2) -0.04 0.01 -0.06 -0.04 -0.01

βλ5 (risk) 0.14 0.06 0.02 0.14 0.27

βπ0 (const) -3.53 0.50 -4.48 -3.53 -2.53

βπ1 (fuel) -0.11 0.04 -0.20 -0.11 -0.03

βπ5 (risk) 0.69 0.09 0.51 0.69 0.86

Table 4: Summary of estimated linear effects for λ and π in the ZIP model.
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Figure 7: Estimated posterior mean spatial effects in the ZIP model (centered around

zero) together with corresponding probability plots.
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the relative amount of data of the corresponding covariate values. The estimated

nonlinear effects and the spatial effect in λ are in line with those obtained before in

the Poisson and Negative Binomial models. The interaction between age and gender

is significant and indicates that males younger than 35 cause more accidents than

females of the same ages. In contrast, in the ages in between the behavior is converse

which can be explained as before. Cars seem to be more dangerous in the first three

years, as long as the annual check up organized by the state is not obligatory. The

effects of power of the car and the policyholder’s bonus-malus score are not far from

being linear with a kink at 50 for power. As expected, claim frequencies seem to

increase with the power of the vehicle and with the level occupied in the bonus-malus

scale.

Figure 7 depicts the estimated spatial effects on λ and π. Figure 7 clearly indicates

higher claim frequencies for urban areas like Brussels, Antwerp and Liège.

In the zero inflation parameter, we see that young drivers tend to have a lower π

whereas drivers around 60 have a significantly higher π. The spatial effect depicted in

Figure 7 is much weaker than in λ and basically suggests an inverse relation compared

to the findings in the parameter λ indicating that the expected excess of zeros is

smaller in urban areas and higher in rural areas. However, most districts have no

significant effects on π, as revealed by the accompanying probability plot.

3.3 Comparison of claim frequency models

For specifying all relevant effects in the different predictors, we estimated several

models and compared them based on DIC as explained before. Figure 8 shows the

normalized (random) quantiles of the final models for the three distributions Poisson,

NB and ZIP. Table 5 summarizes the corresponding calculated scores.

Model Brier Score Logarithmic Score Spherical Score DIC

Poisson -32,220.61 -61,946.27 145,416.6 123,455

ZIP -32,213.16 -61,803.56 145,420.2 123,226

NB -32,215.88 -61,803.40 145,419.7 123,230

Table 5: Summarized score contributions from a ten-fold cross validation and DIC

from estimations of the whole data set, optimal values appearing printed in bold.

27



Figure 8: Comparison of quantile residuals in the Poisson, ZIP and NB models.

The residuals of NB and ZIP are very close to the diagonal and indicate a very

good fit to the distribution of the claim frequencies while the residuals of the Poisson

regression indicate a lack of fit with a clear departure from linearity in the right

end. The differences in the computed scores are relatively small but provide further

evidence for zero-inflation or overdispersion since the Poisson model always yields the

smallest scores. The Brier and spherical score are greatest for the ZIP model while the

logarithmic score gives some evidence in favor of the Negative Binomial distribution.

In conclusion, NB and ZIP model both give reasonable fits and are clearly preferable

to the classical Poisson approach of Denuit and Lang (2004).

3.4 Actuarial applications

3.4.1 No-claim probability

The no-claim probability is a key actuarial indicator for underwriting and annual

policy renewal. This probability is given by

Pr[Ni = 0] =


exp(−λi) in the Poisson case(

δi
δi+µi

)δi
in the NB case

πi + (1− πi) exp(−λi) in the ZIP case.

Not surprisingly, given the high percentage of zero observations in the data basis, the

scores in the NB scale parameter δi and in the ZIP parameter πi essentially target
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the no-claim probability.

Table 6 gives the no-claim probability predicted by the Poisson, NB and ZIP models

for the following three risk profiles:

• high risk: unexperienced male driver aged 18 living in Brussels, driving a brand

new, gasoline, powerful car (power 200), occupying the initial level 11 in the

bonus-malus scale, subscribing TPL only.

• medium risk: middle-aged male driver aged 40 living in Liège driving a 4-year

diesel car with power 100, occupying level 2 in the bonus malus scale, subscribing

TPL+limited material damage and theft.

• low risk: retired male driver aged 70 living in the countryside, driving a 15-

year gasoline car with power 30, occupying level 0 in the bonus malus scale,

subscribing TPL+comprehensive coverage.

No vehicle belongs to a fleet and all policies are assumed to be in force for the whole

year.

As we can see from Table 6, the three models provide similar values for the expected

number of claims. This is also the case for no-claim probabilities, except for the high

risk profile where the Poisson model tends to underestimate this actuarial quantity,

making this profile less attractive at renewal compared to NB and ZIP models.

3.4.2 Credibility updates

In the Negative Binomial case, the probability density function of Θi given Ni = k is

exp (−θi (δi + µi)) θ
δi+k−1
i∫ +∞

0
exp (−ξ (δi + µi)) ξδi+k−1dξ

= exp (−θi (δi + µi)) θ
δi+k−1
i

(δi + µi)
δi+k

Γ (δi + k)
,

so that Θi given Ni = k obeys the Gamma distribution with updated parameter

values δi + k and δi + µi. Therefore, the expected relative risk level revised on the

basis of past experience is given by

E[Θi|Ni = k] =
δi + k

δi + µi
.

If the risk profile remains unchanged for the next year, the predicted expected claim

number µi is replaced with its update µi E[Θi|Ni = k] based on the information

29



Low risk Medium risk High risk

Poisson, E[Ni] 0.0433 0.1664 1.8913

Confidence Interval 95% (0.0327,0.056) (0.1366,0.1982) (1.0796,3.0574)

Confidence Interval 80% (0.0359,0.0512) (0.1457,0.1871) (1.2860,2.6021)

NB, E[Ni] 0.0438 0.1667 1.8738

Confidence Interval 95% (0.0327,0.0581) (0.1386,0.1993) (1.0335,3.0189)

Confidence Interval 80% (0.0362,0.0519) (0.1478,0.1869) (1.2965,2.539)

ZIP, E[Ni] 0.0435 0.1648 1.8239

Confidence Interval 95% (0.0327,0.0578) (0.1357,0.1974) (0.9892,2.9565)

Confidence Interval 80% (0.0359,0.0516) (0.1441,0.1856) (1.2269,2.4853)

Poisson, Pr[Ni = 0] 0.9576 0.8468 0.1699

Confidence Interval 95% (0.9456,0.9678) (0.8202,0.8723) (0.047,0.3397)

Confidence Interval 80% (0.9501,0.9647) (0.8294,0.8644) (0.0741,0.2764)

NB, Pr[Ni = 0] 0.9574 0.8501 0.2800

Confidence Interval 95% (0.9438,0.968) (0.8241,0.8734) (0.1509,0.4317)

Confidence Interval 80% (0.9497,0.9645) (0.8339,0.8657) (0.1909,0.3773)

ZIP, Pr[Ni = 0] 0.9579 0.8510 0.2207

Confidence Interval 95% (0.9449,0.9683) (0.8245,0.8748) (0.0898,0.3956)

Confidence Interval 80% (0.9502,0.9652) (0.8343,0.8678) (0.1244,0.3200)

Table 6: Predictions of expected claim numbers and no-claim probabilities for differ-

ent risk profiles according to the Poisson, NB and ZIP models.
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contained in the number k of claims filed by policyholder i. The theoretical bonus-

malus coefficients E[Θi|Ni = k] exhibit some well-known features (see, e.g., Denuit et

al., 2007):

• the a posteriori corrections become more severe when the residual heterogeneity,

measured by Var[Θi], increases.

• considering two policyholders (numbered i1 and i2) such that i1 is a priori a

better driver than i2, that is, µi1 < µi2 ,

– if these policyholders do not report any claim (i.e., Ni1 = Ni2 = 0) then

the a priori worse driver receives more discount provided δi1 = δi2 .

– if these policyholders report k ≥ 1 claims (i.e., Ni1 = Ni2 = k) then the

penalty for the a priori bad driver is less severe than for the good one

provided δi1 = δi2 .

Compared to this classical setting, we have here a new effect coming from the respec-

tive values of δi1 and δi2 which may interfere with the preceding discussion.

Table 7 gives the theoretical bonus malus correction E[Θi|Ni = k] for the three risk

profiles according to the value of k and Table 8 displays the corresponding revised

expected claim frequencies. Considering the three risk profiles defined previously, we

know from Table 3 that δ tends to be larger for diesel vehicles compared to gasoline

ones and smaller for the vehicles covered in TPL only or in TPL+limited material

damage and theft compared to vehicles with comprehensive coverage. The spatial

variation in δ displayed in Figure 4 has no significant impact on the three risk profiles

we consider here. Including the intercept and the exposure-to-risk gives estimated

values of δ equal to exp(2.09) for the low risk profile, exp(1.18) for the medium risk

profile, and exp(0.81) for the high risk profile. Hence, the past claim experience plays

a more important role as the quality of the risk deteriorates, which conforms with

actuarial intuition.

If the low risk profile does not report any accident during the first year, we see

from Table 7 that the revision consists in multiplying the expected claim frequency

by 99.27%. This modest decrease is to be compared with the corresponding values

95.09% for the medium risk profile and 52.97% for the high risk profile. The discounts
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Low risk

k E[Θi|Ni = k] Confidence Interval 95% Confidence Interval 80%

0 0.9927 (0.9815,0.9993) (0.9866,0.9984)

1 1.1617 (1.0172,1.4034) (1.0349,1.293)

2 1.3307 (1.0351,1.8257) (1.0715,1.6001)

3 1.4997 (1.0531,2.2479) (1.1081,1.905)

4 1.6688 (1.0711,2.6702) (1.1448,2.21)

5 1.8378 (1.089,3.0925) (1.1814,2.5165)

Medium risk

k E[Θi|Ni = k] Confidence Interval 95% Confidence Interval 80%

0 0.9509 (0.923,0.9733) (0.9348,0.9669)

1 1.2459 (1.1387,1.3773) (1.1717,1.327)

2 1.5409 (1.305,1.8292) (1.3752,1.7167)

3 1.8359 (1.4703,2.2851) (1.5786,2.105)

4 2.131 (1.6356,2.7356) (1.7831,2.4988)

5 2.426 (1.8009,3.1861) (1.9874,2.8907)

High risk

k E[Θi|Ni = k] Confidence Interval 95% Confidence Interval 80%

0 0.5297 (0.338,0.6975) (0.4079,0.6455)

1 0.7889 (0.5824,0.991) (0.6566,0.9174)

2 1.048 (0.796,1.3009) (0.8813,1.2135)

3 1.3072 (0.9963,1.6561) (1.0974,1.5229)

4 1.5664 (1.1922,2.0188) (1.3166,1.8275)

5 1.8256 (1.3854,2.3749) (1.5235,2.1403)

Table 7: Theoretical bonus malus correction E[Θi|Ni = k] for different risk profiles.
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Low risk

k µi E[Θi|Ni = k] Confidence Interval 95% Confidence Interval 80%

0 0.0434 (0.0324,0.0577) (0.036,0.0514)

1 0.0508 (0.0367,0.0694) (0.0411,0.0614)

2 0.0581 (0.0394,0.0867) (0.0448,0.0733)

3 0.0654 (0.0407,0.1052) (0.0473,0.0866)

4 0.0728 (0.0415,0.1229) (0.0491,0.0993)

5 0.0801 (0.0427,0.1392) (0.0513,0.1129)

Medium risk

k µi E[Θi|Ni = k] Confidence Interval 95% Confidence Interval 80%

0 0.1584 (0.132,0.188) (0.1408,0.1769)

1 0.2075 (0.1701,0.254) (0.1816,0.2352)

2 0.2567 (0.2003,0.3267) (0.217,0.2977)

3 0.3058 (0.2277,0.4036) (0.251,0.3612)

4 0.3549 (0.2575,0.4781) (0.286,0.4261)

5 0.4041 (0.2868,0.558) (0.3192,0.4905)

High risk

k µi E[Θi|Ni = k] Confidence Interval 95% Confidence Interval 80%

0 0.958 (0.6408,1.3239) (0.7384,1.1807)

1 1.4283 (1.0242,1.8487) (1.1769,1.6907)

2 1.8986 (1.3382,2.3944) (1.563,2.2394)

3 2.3689 (1.6642,3.0078) (1.922,2.8068)

4 2.8392 (1.9959,3.6243) (2.2817,3.3782)

5 3.3095 (2.2739,4.2618) (2.6371,3.9529)

Table 8: Resulting revised expected claim frequency µi E[Θi|Ni = k] for different risk

profiles.
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awarded to policyholders who do not report any accident to the insurance company are

thus increasing with the a priori annual expected claim frequency: The more claims

are expected by the insurance company on the basis of observable characteristics, the

higher the discount in case no claims are reported. This classical effect is amplified

here by the values of δ which put more weight on past experience for higher risk

profiles. Note however from Table 8 that the revised expected claim frequency is still

larger the higher the risk profile.

Now, considering the penalty in case one claim is reported, we see that when the low

risk profile reports one claim, the expected claim frequency is multiplied by 116.17%.

The corresponding values for the medium risk profile and for the high risk profile are

124.59% and 78.89%, respectively. The penalties in case an accident is reported to

the company are thus decreasing with the a priori annual expected claim frequencies.

Compared to the classical analyses where reporting a claim typically entails a penalty

comprised between 50 and 75%, we see that the present system based on accurate

risk classification appears to be less severe, and thus easier to implement in practice.

Moreover, the high risk profile still receives a discount in case only one claim is

reported, the penalty appearing when 2 or more claims are filed. Similar comments

apply when more claims are reported, i.e. for higher values of k. The corresponding

revised expected claim frequencies are displayed in Table 8.

Let us now consider the ZIP model. In this case, Θi is Bernoulli distributed with

mean 1− πi and

Pr[Θi = 0|Ni = ki] =


Pr[Θi=0]
Pr[Ni=0]

= πi
πi+(1−πi) exp(−λi) if ki = 0

0 if ki ≥ 1.

If Ni = 0 then the number of claims for next year is still ZIP with increased probability

mass at zero given by Pr[Θi = 0|Ni = 0]. If Ni ≥ 1 then the number of claims for next

year becomes Poisson distributed with mean λi and no further re-evaluation based on

claim experience is needed. As these re-evaluations are rather crude, the ZIP model

does not provide accurate enough credibility updates for claim frequencies and the

NB model is preferable.
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4 Modelling Claim Sizes: Zero-Adjusted Regres-

sion

4.1 From individual to aggregate claim sizes

Large claims generally affect liability coverages. These major claim sizes require a

separate analysis as no simple standard parametric model seems to emerge as provid-

ing an acceptable fit to both small and large claims. Let us nevertheless mention the

composite models considered, e.g., in Pigeon and Denuit (2011) which can accomo-

date a mix of small and large claims but for which no regression analysis is available,

yet. Here, we restrict the analysis to observations with total claim size less than

exp(15) which corresponds to a threshold approximately equal to EUR 80,000 (or 3.2

millions Belgian francs) in the spirit of Cebrian et al. (2003).

With the noticeable exception of Jørgensen and Paes de Souza (1994), the vast ma-

jority of actuarial analyses of the pure premium so far have examined frequencies and

severities separately. The Tweedie GLM used by these authors is however quite re-

strictive as the no-claim probability is not allowed to depend on covariates. Heller et

al. (2007) extended this approach to Poisson, ZIP or NB claim frequencies combined

with Gamma or Inverse-Gaussian severities. The Tweedie distribution appears as a

special case corresponding to the Poisson-Gamma choice. In this section, we target

the total annual claim amount using zero-adjusted regression models. This provides

an alternative to these mixed Poisson compound models.

Before the Poisson regression became popular among actuaries, claims data were often

analyzed using logistic regression; see, e.g., Beirlant et al. (1991). Zero-adjusted

models are closely related to this approach but avoid the two-step analysis. As the

likelihood factors in two parts, one with the probability of reporting no claim and

another one with positive claim amounts, the two strategies lead to very similar

results. But analyzing the total claim amount by means of a single zero-adjusted

regression model allows the actuary to get accurate confidence intervals for several

key risk indicators, such as the expected claim cost, for instance. Confidence intervals

are more difficult to derive in the two-step approach because estimation errors from

the zero part and from the continuous part need to be combined. Moreover, it is not
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that easy to obtain global DIC values when performing separate analyzes.

4.2 Zero-adjusted models

Zero-adjusted (ZA) models are discrete-continuous distributions with a probability

mass at zero and a continuous component which can be any parametric distribution

as long as first and second derivative of the log-likelihood can be computed. Therefore,

these models additionally allow to estimate the probability for positive claim sizes.

The idea of using such models to describe insurance data goes back to Heller et al.

(2006) who applied the zero-adjusted Inverse-Gaussian distribution as a model for

claim sizes, including zero claims. Whereas these authors confined to linear effects

of the covariates (a logit-linear model for the occurrence of a claim and log-linear

models for the expected claim size and for its dispersion when at least one claim is

reported), we allow here for nonlinear effects of the explanatory variables, including

spatial effects.

Consider the total claim sizes Yi and covariate vectors as in the previous section. The

distribution of Yi is defined by Pr[Yi = 0] = 1− πi and, given Yi > 0 (which happens

with probability πi) Yi has probability density function g(·) corresponding to some

continuous distribution with support in R+. Here, 1− πi is the no-claim probability,

not to be confused with the parameter πi in the ZIP model.

This representation corresponds to the individual model of risk theory. See, e.g.,

Chapter 2 in Kaas et al. (2008) for an introduction. In this model, the total claim

cost is decomposed into the product of an indicator for the event “the policy produces

at least one claim during the reference period” and a positive random variable repre-

senting the total claim amount produced by the policy when at least one claim has

been filed. This exactly corresponds to the construction of the ZA models. Numerous

powerful actuarial techniques have been developed for the individual model, which

are thus directly applicable to the ZA modeling output and facilitates the actuarial

analysis.
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4.3 Numerical illustration

To model the total claim size, we used the LogNormal (LN), Gamma (GA) and

Inverse-Gaussian (IG) distribution supplemented with a probability mass at zero.

This allows for the simultaneous estimation of characteristics of the claim size distri-

bution and the no-claim probability. Explanatory variables are included in the three

parameters, the probability mass at zero 1 − π as well as both parameters of these

three continuous distributions. We use log link functions for positive parameters and

the identity link for the real-valued parameter of the LogNormal distribution. For the

claim probability π, the complementary log log link has been used. As for claim fre-

quencies, all models are compared graphically applying normalized quantile residuals

and by proper scoring rules. Predictor specifications were chosen by DIC together

with significances of the effects as described before. The spatial effect is modeled in

the spirit of Lang et al. (2013) consisting of a Markov random field and an additional

independent and identically distributed random effect.

Figure 9 shows the normalized quantile residuals computed from the subset of ob-

servations with positive claims. The residuals indicate that LN and IG are better

assumptions than the GA distribution since the residuals of the former two are very

close to the diagonal while the sample quantiles of the GA distribution greater than

3 are higher than the theoretical quantiles. This indicates that the GA model may

only be appropriate for modeling small claim sizes.

In Table 9, the computed scores and the DIC underline the preferences for applying

either the ZALN model (which would be chosen by DIC as well as the logarithmic,

quadratic and spherical score) or the ZAIG (with highest CRPS).

Model Brier Score Logarithmic Score Spherical Score CRPS DIC

ZALN 105,610.7 -171,614.4 125,911.6 -134,845.7 90,202

ZAIG 103,211.7 -172,983.5 124,908.4 -127,940.1 90,323

ZAGA 104,931.5 -174,303.7 125,533.1 -148,244.3 94,064

Table 9: Summarized scores from a ten-fold cross validation and DIC obtained from

estimations of the whole data set, optimal values appearing printed in bold.

For further illustration of this score, we performed a quantile decomposition and plot-

ted the scores against the quantiles in Figure 10. It gets obvious that for quantiles
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Figure 9: Comparison of quantile residuals in the LogNormal, Inverse Gaussian and

Gamma model.
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Figure 10: Quantile decomposition of the CRPS.

smaller than 0.2 and greater than 0.9 the scores of ZALN and ZAIG are very similar,

while in between the ZAIG model delivers smaller losses. In a nutshell it can be

concluded that both the ZALN and ZAIG distributions seem to be very promising

candidates for the aggregate claim size distributions. For illustration and interpreta-

tion of effects we choose the ZALN model in the remainder of this section.

Given that the total claim size Yi is positive, we get

E[Yi|Yi > 0] = exp

(
µi +

σ2
i

2

)
Var[Yi|Yi > 0] = exp

(
2µi + σ2

i

)
(exp(σ2

i )− 1).

Here, exp(µi) corresponds to the median claim cost when at least one claim has been

reported.
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Based on the DIC we specified the following predictor structures for the location

parameter µcosts = ηµcosts ∈ R and scale parameter σ2
costs = exp

(
ησ

2

costs

)
> 0. Here,

ηµcosts = fµ1 (ageph) + sex fµ2 (ageph) + fµ3 (agec) + fµ4 (bm) + fµspat(distr) + (zµ)′ βµ,

where zµ consists of fleet , coverage and an overall constant. For σ2 we get

ησ
2

costs = fσ
2

1 (ageph) + fσ
2

spat(distr) +
(
zσ

2
)′
βσ

2

,

where zσ
2

consists of fleet , coverage and an intercept.

For πcosts, we follow again Baetschmann and Winkelmann (2012) since there are sev-

eral policyholders with a contract shorter than one year and we choose

πcosts = 1− exp(− exp(ηπcosts)). (6)

It is instructive to compare the specifications (5) and (6): In the ZIP case π mod-

els the probability of observing structural zeros (compare Section 3.2) while in the

ZALN model π stands for the probability of observing a positive claim size, i.e.

πi = Pr[Yi > 0]. Therefore, equations (5) and (6) are reasonable since an increasing

contract period, included in the predictor, reduces π in the ZIP model and raises the

probability of observing a positive claim connected with a positive amount. Based

on this specification, we found as best predictor specification

ηπcosts = fπ1 (ageph)+sex fπ2 (ageph)+fπ3 (agec)+fπ4 (power)+fπ5 (bm)+fπspat(distr)+(zπ)′ βπ,

where zπ consists of fuel , fleet , coverage an intercept and the logarithm of the contract

period in days.

Figure 14 depicts the estimated spatial effects on µ, σ2 and π. Estimates of nonlinear

effects are shown in Figures 11, 12 and 13 while Table 10 summarizes all linear effects.

Considering the effects of the categorical covariates on the claim probability π, we see

from Table 10 that driving a diesel vehicle decreases the no-claim probability whereas

belonging to a fleet increases this probability. Also, extending the coverage increases

the no-claim probability. As expected, all estimated nonlinear effects on π are quite

similar to the ones we estimated in the ZIP model, so that the same comments apply

here, mutatis mutandis. This can be explained by the large number of policyholders

who either report no or only one claim. For the spatial effects, we can summarize
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Figure 11: Posterior mean estimates of nonlinear effects on π (centered around zero)

together with pointwise 80% and 95% confidence intervals in the ZALN model.
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Figure 12: Posterior mean estimates of nonlinear effects on µ (centered around zero)

together with pointwise 80% and 95% confidence intervals in the ZALN model
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Figure 13: Posterior mean estimates of nonlinear effects on σ2 (centered around zero)

together with pointwise 80% and 95% confidence intervals in the ZALN model.
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Figure 14: Estimated posterior mean complete spatial effects in the ZALN model

(centered around zero) together with corresponding probability plots.

42



Parameter mean standard error 2.5% quantile median 97.5% quantile

βπ0 (const) -5.25 0.15 -5.55 -5.25 -4.94

βπ1 (fuel) -0.10 0.01 -0.12 -0.10 -0.08

βπ2 (fleet) -0.06 0.02 -0.10 -0.06 -0.02

βπ3 (coverage1) 0.06 0.01 0.03 0.06 0.08

βπ4 (coverage2) -0.04 0.01 -0.07 -0.04 -0.02

βπ5 (risk) 0.58 0.02 0.54 0.58 0.63

βµ0 (const) 10.20 9.31 9.99 10.20 10.40

βµ1 (fleet) 0.07 0.03 0.02 0.07 0.13

βµ2 (coverage1) -0.02 0.02 -0.05 -0.01 0.02

βµ3 (coverage2) -0.15 0.02 -0.18 -0.15 -0.11

βσ
2

0 (const) 0.61 0.04 0.52 0.61 0.69

βσ
2

1 (fleet) -0.14 0.03 -0.20 -0.14 -0.07

βσ
2

2 (coverage1) -0.05 0.01 -0.08 -0.05 -0.02

βσ
2

3 (coverage2) -0.12 0.02 -0.15 -0.12 -0.08

Table 10: Summary of estimated linear effects for π, µ and σ2 in the ZALN model.

that the effect in π is also similar to the effect on λ with higher chances of reporting

claims in urban areas. Considering the linear effects on µ and σ2, we see from Table

10 that belonging to a fleet increases µ but decreases σ2, increasing the median claim

severity but leaving the expected claim cost almost unchanged. Subscribing TPL only

or limited material damage decreases µ and σ2 compared to comprehensive coverage

(remember that we only deal here with the TPL guarantee). Looking at the estimated

nonlinear effects on µ, we see that when claims are reported, the median cost is higher

for older drivers. Taking into account the monotonically decreasing estimated effect of

ageph in σ2 sowewhat tempers this effect when expected claim size is considered but

the overall effect is still that older drivers report more expensive annual claims. The

effect of the ancientness of the car is much less significant. Also, the level occupied

in the bonus-malus scale does not seem to bring a lot of information about µ, which

can be easily understood as movements in this scale only result from the number of

claims and not their size. It is interesting to discuss the spatial effects on µ and σ2 as

they reveal new characteristics of claim sizes. The effect on µ relates to the smaller

expected claim cost in Brussels and Antwerp areas (major cities with low average

speed because of traffic congestion) compared to rural areas in Limburg and Ardenne
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(with weaker traffic intensity and higher average speed resulting in more expensive

accidents when they occur). This main effect is refined by the spatial structure in

σ2, somewhat increasing the expected claim severities in some urban districts and

decreasing the average claim cost in Wallonia compared to Flanders and Brussels.

This might be explained by the higher living standards in Flanders and Brussels

where more expensive cars may be driven, increasing the average claim size.

Low risk Medium risk High risk

ZALN, E[Yi] 3965.87 5699.8 88031.46

Confidence Interval 95% (2620.23,5833) (4246.14,7566.32) (49504.56,150846.18)

Confidence Interval 80% (2969.85,5044.94) (4674.02,6758.25) (58426.16,121233.93)

ZALN, πi = Pr[Yi > 0] 0.0425 0.1522 0.7801

Confidence Interval 95% (0.032,0.0548) (0.1274,0.1798) (0.5867,0.9383)

Confidence Interval 80% (0.0351,0.0501) (0.1353,0.1706) (0.6617,0.8896)

ZALN, µi = E[log(Yi)|Yi > 0] 10.3627 9.6232 10.1496

Confidence Interval 95% (10.1217,10.5796) (9.4573,9.7911) (9.8048,10.5242)

Confidence Interval 80% (10.2165,10.5127) (9.5106,9.7353) (9.923,10.3756)

ZALN, σ2
i = Var[log(Yi)|Yi > 0] 2.1375 1.802 2.8976

Confidence Interval 95% (1.6951,2.6315) (1.5231,2.0831) (2.2863,3.6579)

Confidence Interval 80% (1.8561,2.4481) (1.6246,1.9902) (2.4674,3.3468)

Table 11: Predictions of expected claim amounts in Belgian francs (1EUR being

approximately equal to 40 Belgian francs) and of parameters π, µ and σ2 for different

risk profiles in the ZALN model.

Table 11 displays the predictions obtained from the ZALN model for the three risk

profiles defined earlier in the paper. Again, we discover there new features of the

insurance data set as the three risk profiles greatly differ in their respective no-claim

probabilities but not that much on the expected claim size when claims are reported.

We see from Table 11 that E[Yi|Yi > 0] is similar for the low and high risk profiles,

but smaller for the medium risk profile. This conforms with actuarial intuition: Indi-

vidual drivers’ characteristics are more efficient at explaining the number of reported

TPL claims than their corresponding costs which depend to a large extent on the

third party involved. Considering the variations in the no-claim probabilities, we

nevertheless end up with an expected claim cost E[Yi] which increases with the risk

profile considered.
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5 Discussion

The present paper extends the study conducted by Denuit and Lang (2004) to gener-

alized additive models for location, scale and shape (GAMLSS). This flexible, semi-

parametric class of regression models turns out to be particularly suitable for analyz-

ing insurance data. The restrictive exponential family assumption for the response

is relaxed compared to standard GLM-based analysis which opens the door to nu-

merous response distributions in line with the specificities of insurance data. While

ordinary regression analyzes only the effects of covariates on the mean of a response,

the approach proposed in the present paper allows the actuary to include risk factors

not only in the mean but also in other parameters governing the claiming behavior,

like the degree of residual heterogeneity or the no-claim probability. In this broader

setting, the Poisson assumption made in Denuit and Lang (2004) is replaced with a

mixed Poisson one, either the Negative Binomial distribution with cell-specific het-

erogeneity or the zero-inflated Poisson distribution with cell-specific probability mass

at zero. Bayesian inference is based on efficient Markov chain Monte Carlo simu-

lation techniques with appropriate proposal densities based on iteratively weighted

least square approximations to the full conditionals. In this way, simultaneous estima-

tion of possible nonlinear effects, spatial variations, random effects and interactions

between risk factors within the data set are possible.

In addition to these models for claim frequencies, new models for claim severities are

also presented, either per claim or aggregated per year. In the former case, location

and scale parameters in the LogNormal, Gamma or Inverse Gaussian distributions

may depend on covariates. Total claim amounts distributions are then obtained by

combining estimated frequencies with estimated claim sizes by means of Panjer al-

gorithm, for instance. In the latter case, an additional probability mass is placed at

zero, corresponding to the policies without claims, allowing the actuary to account

for zeros in the analysis of the amount of loss directly without resorting to models for

claim frequencies. This yields zero-adjusted LogNormal, Gamma or Inverse Gaussian

distributions able to deal with the large number of zero observations within the insur-

ance data sets. Such zero-adjusted models based on distributions with a probability

mass at zero and a continuous component thus allow for analyzing claim sizes in due
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consideration of claim-free policyholders. In all cases, linear and nonlinear effects of

the covariates can be accounted for, with or without parametric formulation in the

latter case. Interactions between risk factors are allowed and spatial correlations as

well as unobserved heterogeneity can be captured.

To illustrate the relevance of this approach, we performed a detailed illustrative anal-

ysis based on the Belgian motor insurance portfolio studied in Denuit and Lang

(2004). These highly flexible regression models reveal new features of insurance data

and have important consequences for a priori risk management and for credibility

updating mechanisms. Guidelines for model choice with respect to the response dis-

tributions and for further model specifications are also provided. For the comparison

of models with respect to the distribution, we consider quantile residuals as an effec-

tive graphical device and scoring rules that allow to quantify the predictive ability of

the models. The deviance information criterion is used for further model specification.

To end with, let us mention that GAMLSS models have numerous additional poten-

tial applications to insurance. For instance, the GAMLSS family includes the Beta

distribution inflated at 0, at 1 or at 0 and 1. This framework is thus appropriate to

model material damage claims which are expressed as a percentage of the sum insured

(the value of the insured vehicle, in motor insurance). Applications to life and health

insurance are also promising, in the spirit of Gschlossl et al. (2011).
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2013-07 Daniela Glätzle-Rützler, Matthias Sutter, Achim Zeileis: No myopic
loss aversion in adolescents? An experimental note

2013-06 Conrad Kobel, Engelbert Theurl: Hospital specialisation within a DRG-
Framework: The Austrian case

2013-05 Martin Halla, Mario Lackner, Johann Scharler: Does the welfare state
destroy the family? Evidence from OECD member countries
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