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Abstract

ZeroSignVAR is a flexible MATLAB routine, which estimates vector autoregressions

(VARs) in an Uhlig (1994) (Bayesian) fashion and identifies shocks using sign and/or zero

restrictions. This vignette describes the application of ZeroSignVAR and the rich set of

specification options that comes with the routine. The package delivers the set of structural

models in the IRF, FEVD and HD representation.
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1 Introduction

Since the seminal work by Sims (1980), structural vector autoregressive (SVAR) models have be-

come one of the primary tools to study macroeconomic dynamics. Macroeconomic variables are

inherently endogenous, which complicates the application of traditional econometric methods

to evaluate causal relationships. The SVAR framework allows to model endogenous interdepen-

dencies.

VARs are generally estimated in reduced form, i.e. without contemporaneous relationship be-

tween the endogenous variables in the system. While the reduced form summarizes the data,

we are not able to interpret how the endogenous variables affect each other as the reduced form

residuals are not orthogonal. The recovery of structural parameters and shocks requires identi-

fication restrictions that reduce the number of unknown parameters of the structural model.

A widely applied assumption on the contemporaneous relationships among the endogenous vari-

ables is the recursive ordering of the VAR, as this is straight-forward to implement with a
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Cholesky decomposition of the Variance-Covariance Matrix of the reduced form residuals. How-

ever, the recursive ordering is only plausible given a clear chain of causation. In a number of

macroeconomic applications this is difficult to justify, in particular given the frequency of the

data. The sign-restriction approach, in contrast, represents an identification scheme, which does

not require to determine the sequence of causation in the model. In contrast, it allows that

all variables respond to identified shocks simultaneously. The intuition of the sign restriction

identification scheme is to consider all possible permutations of SVAR models corresponding to

the reduced-form representation, but only to retain those that yield “economically reasonable”

impulse responses. The sign-restriction approach dates back to Faust (1998), Canova and Nicolò

(2002) and Uhlig (2005) and since then has been applied frequently to identify a broad set of

macroeconomic shocks (Fry and Pagan, 2011). So far, however, ready-to-use selection algorithms

that can easily be adjusted to a wide range of applications are scarce.1

In this vignette we describe a MATLAB routine, which allows researchers to estimate VARs in an

Uhlig (1994) (Bayesian) fashion and identify shocks using either sign restrictions, zero restrictions

or a combination of zero and sign restrictions. Sign and zero restrictions are imposed using

selection matrices. Our algorithm is based on Arias et al. (2014). As we focus in this description

on the application of our MATLAB routine, we ask the reader to refer to the original paper for

technical details.

The routine offers the user a wide range of options that can be specified. This renders the

routine extremely flexible and allows to replicate most algorithms put forward in the literature.

While the routine offers a set of illustrations that pertain to percentiles of the distribution of

the structural models, the core of the routine is the set of structural models in impulse response

function (IRF), forecast error variance decomposition (FEVD) and historical decomposition

(HD) representation. Using the set of structural models, the user can produce customized

graphs and statistics, and use the structural models for further analysis. Using the set of

identified models, the user may want to implement e.g. elasticity bounds (Kilian and Murphy,

2012), attain robust error bands (Giacomini and Kitagawa, 2015), or importance sample to

reshape the distribution of structural models (Arias et al., 2018).

The description of ZeroSignVAR is structured as follows. In Section 2 we sketch first the idea of

sign restrictions, and lay out an algorithm to implement them in Section 3. Section 4 describes

the ZeroSignVAR package and Section 5 illustrates ZeroSignVAR using empirical data from the

US.

1See Danne (2015) for a sign restriction algorithm implemented in R that allows to identify one single structural
shock.

2



2 The Idea of Sign Restrictions

Consider a VAR(1) in structural form (without a constant term):

Yt = B0Yt +B1Yt−1 + εt, (1)

where Yt represents the vector of n endogenous variables, B0 captures the contemporaneous

relationships, B1 is the coefficient matrix at lag 1, and εt is a vector of white noise reduced form

residuals with ε ∼ N(0, 1) and Σε = E(εtε
′
t) = I. To estimate equation (1) we have to dispense

with the contemporaneous endogenous variables Yt on the right hand side:

(I −B0)Yt = A1Yt−1 + εt

B∗0Yt = A1Yt−1 + εt,where B∗0 = I −B0

Yt = B∗−10 A1Yt−1 +B∗−10 εt.

Now the VAR(1) can be estimated in reduced form:

Yt = A1Yt−1 + ut, (2)

where the reduced form coefficients A1 and ut represent weighted averages of the structural

coefficients B1 and εt. In particular, A1 = B∗−10 A1 and ut = B∗−10 εt. While ut is serially

uncorrelated and exogenous, the variance-covariance matrix Σu is not diagonal and therefore

the innovations ut lack a structural interpretation.

To retrieve the structural parameters, we require additional information about the contempora-

neous relationships B∗0 . Since, Σε = I, and Σu = E(utut
′) = B∗−10 E(εtεt

′)B∗−10
′

= B∗−10 B∗−10
′
,

we require n(n − 1)/2 restrictions to exactly identify the structural parameters B∗0 , B1, and

εt. The structural parameters are commonly identified using a Cholesky decomposition of the

reduced form variance-covariance matrix Σu (as originally suggested by Sims, 1980), or specific

short-run or long-run restrictions derived from theory (see e.g. Blanchard and Quah, 1989; Gaĺı,

1992; Cecchetti and Karras, 1994).

To illustrate the idea of sign restrictions, let us write the reduced form VAR(1) in moving average

representation:

Yt =

∞∑
i=0

φiut−i, (3)

where φ captures the reduced form impulse responses with φ0 = I and φi =
∑i

j=1 φi−jAj . In case

of Cholesky, with Σu = PP ′, we would obtain structural impulse responses ψi = φiP since with

Yt =
∑∞

i=0 φiPP
−1ut−i, the structural variance-covariance matrix Σε = P−1E(utut

′)P−1
′

=

P−1ΣuP
−1′ = P−1PP ′P−1

′
= I. While the Cholesky decomposition imposes a recursive struc-

ture in the VAR, in case of sign restriction we identify structural shocks by imposing restrictions
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on the signs of ψi over a specific horizon i. Hence as we do not exactly identify the impact

matrix B∗0 as different orthogonalizations of the reduced form models are potentially consistent

with the required sign restrictions. To obtain another orthogonal representation of the impulse

responses in Equation (3), e.g. ψ̃i, we can simply multiply ψi=φiP by a random matrix Q with

the property Q′Q = I, since then it still holds that Σ̃ε = E(Q′P−1utut
′P−1

′
Q) = I.

3 The Identification Algorithm

Our identification algorithm follows along the same steps:

1. Estimate the reduced form VAR.

2. Obtain orthogonal impulse responses by multiplying the reduced form responses φi with the

lower triangular Cholesky factor P , from the decomposition of the reduced form variance-

covarinace matrix Σu = PP ′, and a random orthonormal matrix Q, which satisfies that

Q′Q = I.

3. Check whether orthogonal impulse responses fulfill sign restrictions.

4. If yes, the orthogonal impulse responses bear a structural interpretation and are saved.

5. If not, repeat steps 2 and 3.

Step 1 In ZeroSignVAR the first step can be either estimated with ordinary least squares

(OLS) or using a Bayesian approach. In the Bayesian approach we follow Uhlig (1994) and

estimate the reduced form coefficients using an uninformative Normal-Inverse-Wishart prior, and

obtain the posterior distribution, which is again a Normal-Wishart density, using the estimates

Â and Σ̂u from an OLS regression as location parameters.

Step 2 In the second step we follow either Rubio-Ramı́rez et al. (2010) or Arias et al. (2018)

depending on whether only sign restrictions or a combination of sign and zero restrictions are

imposed. In case of pure sign restrictions, Rubio-Ramı́rez et al. (2010) show that it is an

efficient way to obtain a random orthonormal matrix Q using a QR decomposition on a random

matrix X (drawn from the normal distribution) with dimension n × n, where n is the number

of endogenous variables. In contrast, when zero restrictions are imposed, we follow Arias et al.

(2018) and construct the matrix Q recursively. The recursive construction of Q allows to obtain

an orthonormal matrix which also ensures that the transformed impulse responses (ψ̃i = φiPQ)

are zero when required.

To improve the efficiency of the identification algorithm, we allow that the algorithm may

rearrange the columns of Q if applicable. In case of pure sign restrictions, consider for instance
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that we identify aggregate demand, aggregate supply and monetary policy shocks plus one

residual shock. Now given one specific draw of Q, it might be the case that ψ̃i fulfill the

restrictions of the first (aggregate demand) shock but the responses of the second and third

shocks are exactly interchanged, i.e. the responses of the second shock are consistent with a

monetary policy shocks, while the responses of the third shock are consistent with an aggregate

supply shock. As the impulse responses simply do not fulfill the imposed restriction due to the

ordering of shocks, our algorithm rearranges the columns of Q such that the restrictions are

fulfilled. More specifically, the algorithm always works through the columns of Q sequentially

and compares each orthogonal shock (i.e. each column of Q, qj) with all sets of impulse responses

corresponding to the different structural shocks, starting always with the structural shock that

has the highest number of sign restrictions. In case of zero restrictions, the algorithm compares

only columns of Q with those structural shocks that have exactly the same zero restrictions.

While this sequential check of the sign restrictions substantially improves the efficiency of the

algorithm, it also makes sure that no structural shock is falsely classified as residual shock. Note

that although shocks are orthogonal by construction it still might be the case that two orthogonal

shocks reveal the same structural properties given the imposed restrictions. In other words, it is

principally possible that one specific Q captures two orthogonal shocks which produce impulse

responses that are both consistent with the imposed restrictions of one structural shock. In

other words, orthogonality is not a sufficient condition in case of sign restrictions to distinguish

between structural shocks.

Given that a model is only partially identified, i.e. that some shocks are not identified, it

therefore might be the case that orthogonal shocks, which bear a structural interpretation, are

wrongly classified as residual shocks. While this should not be problematic for the analysis of im-

pulse responses of the identified shocks, it might matter for variance decompositions. Therefore,

our algorithm ensures that orthogonal shocks do not bear the same structural interpretation.

Step 3 To check the sign restrictions in the third step, we follow Rubio-Ramı́rez et al. (2010)

and Arias et al. (2018) and specify for each shock j a selection matrix S which allows to check

the imposed restriction with the simple condition that:

Sjf(ψh)qj > 0, for h = 0, ...,H and 1 ≤ j ≤ n, (4)

where f(ψh) is a vertically stacked matrix containing the Cholesky orthogonalized impulse re-

sponses ψh, H is the maximum horizon of the imposed sign restrictions, and qj indicates the jth

column of Q. As S is a selection matrix, each row specifies exactly one sign restriction (1 in case

of a positive response and −1 in case of a negative response). Therefore, the row dimension is

determined by the number of sign restrictions sj . The columns of S correspond to the rows of

f(ψh), with the dimension of n(H + 1) and thereby specify on which variable and what horizon

h the sign restriction should be imposed.
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Example To identify an aggregate demand shock let us assume that output, prices and the

discount rate should all respond with the same sign on impact and the next period. The three

variables are the only variables in our toy example. Furthermore, the aggregate demand shock

is the first shock we identify. We impose in total 6 restrictions on responses of 3 variables, over

a maximum horizon H = 1 and hence, S1 has a dimension of 6× 6. Given the order of the VAR

is output, prices and the discount rate, S1 is ordered as follows:

S1 =



1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1


.

Note that the rows of Sj can be ordered arbitrarily, but not the columns as they refer to the

order of variables in the VAR. More specifically, the columns of S1 correspond to the responses

of output, prices and the discount rate in h = 0, and to the responses of output, prices and

the discount rate in h = 1. Hence, the sign restriction in the first row specifies that output

reacts positively to the AD shock on impact. The second row sets the restriction for the output

response in the subsequent period. The third row refers to the sign restriction on prices on

impact. Etc.

Zero restrictions, in contrast to sign restrictions, hold by construction. In case zero restrictions

are specified, the orthogonal matrix Q is obtained recursively taking into account the imposed

zero restrictions. Due to the recursive construction of Q, shocks have to be ordered according

to the number of zero restrictions, starting with the shock with the highest number of zero

restrictions. One has to specify first the shock with the highest number of zero restrictions.

Arias et al. (2018) show that zero restrictions are linear restrictions on each column of the

orthogonal matrix Q. More specifically, the j column of Q is given by

qj =
kj−1k

′
j−1xj∥∥∥kj−1k′j−1xj∥∥∥

for 1 ≤ j ≤ n and any vector kj−1 whose column form an orthonormal basis for the null space

of the (zj + max{1, j − 1}) × n matrix Rj = [(Zjf(ψh))′ q1...qj−1]
′, where ‖‖ is the Euclidean

norm, zj is the number of zero restrictions for each shock j, and xj is the jth column of a n× n
matrix X that contains normally distributed random numbers.2

Example Consider again a small monetary VAR, including an output measure, prices and the

discount rate. To identify a monetary policy shocks we might assume that changes in output

2In MATLAB we define K = null(R).
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and prices influence monetary policy contemporaneously but that policy measures affect the

economy only with a one period lag (see e.g. Christiano et al., 1999). Given that the policy

shock is the only shock we want to identify with zero restrictions (and hence it is the shock with

the highest number of zero restrictions) it has to be the first shock that we identify. Furthermore

consider that the order of the variables is output, prices and the policy measure. As we impose

zero restrictions on two variables on impact Z1 has a dimension of 2 × 2, where the ones are

ordered as follows:

Z1 =

(
1 0

0 1

)
.

Step 4 In the fourth step, given the imposed sign restrictions are fulfilled (zero restrictions

always hold by construction), the structural impulse responses are saved. An option specifies,

whether the algorithm proceeds with Step 2 and checks another Q-transformations, until a

specific number of Q-draws has been checked, or in case of the Bayesian estimation, proceeds

with Step 1, and draws another model from the reduced form posterior distribution, until a

specific number of reduced form model has been drawn.

Step 5 When the imposed sign restrictions are not fulfilled, the algorithm proceeds with Step

2 and 3 and checks a new draw of matrix Q. When the maximum of Q transformation set in the

options is reached and no Q matrix has fulfilled the restrictions, the algorithm proceeds with

another model draw in case of the Bayesian estimation (as described in Step 4) or ends with

the error message 'No model fitting the restrictions was found.' in case of the OLS

estimation. The same error message is displayed if no model is found for all draws from the

reduced form posterior distribution in case of the Bayesian approach.

4 The ZeroSignVAR Package

To use ZeroSignVAR, download the zip-file ZeroSignVAR.zip from one of the authors’ home-

pages and extract its content. The folder contains a clean startZeroSign.m file, a folder called

functions, this vignette in pdf format, two example files (Model 01.m, Model 02.m) file, and the

corresponding data.xls file. The code is organized such that only the startZeroSign.m file has

to be modified for the personal application. In this file the user specifies the available options,

the data and the sign and zero restrictions. When the start file is specified, the user simply

hits the run button and all results are saved in a specified folder. The example files apply the

ZeroSignVAR algorithm to U.S. data as described in Section 5.
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4.1 Options

Using the structure environment called opt the user may adjust several options. The structure

environment allows to easily add new options if applicable for the individual use of ZeroSignVAR.

While several options are set to default values when missing, the mandatory options have to be

specified by the user. When a mandatory option is missing the algorithm stops with a build

in error message. The options include general program settings, VAR and data specifications,

options for the estimation and identification, and results and plot options. In the following

we describe each option and indicate whether it is a mandatory option [M] and whether the

option has to be specified in text [STR, LIST] or numerical format [SCA, VEC]. STR indicates

a single string element ('String Element'), LIST is a list of string elements ({'String ...

Element 1', 'String Element 2'}), SCA indicates a scalar value, and VEC is a sleeping

vector ([1, 2, 3]). The options can be specified in any order:

opt.modelName Choose a unique model name. A folder will be created with this

name in which all result files are saved. E.g. 'Model 01'

[M, STR]

opt.modelPath Specify the path to the folder, in which all result files should be

saved.

[M, STR]

opt.lVars Define labels for the variables in the same order as they enter the VAR,

i.e. according to the columns of the data matrix y. E.g. {'GDP', 'CPI', 'FFR'}.
[M, LIST]

opt.lShocks Define labels for the identified shocks. The number of shock labels

has to be equal to the number of variables (i.e. label also residual shocks).

[M, LIST]

opt.startDate Define the start date of the data (MM-DD-YYYY). [M, STR]

opt.endDate Define end date (MM-DD-YYYY). [M, STR]

opt.nLags Define the lag order. [M, SCA]

opt.estimationMethod Choose the estimation method. Available options: 'OLS'

or 'diffuse', corresponding to either ordinary least square or Bayesian estimations.

[M, STR]

opt.runNumber Specify the number of a run. This option can be used to add addi-

tional iterations to an existing estimation. The run number controls that different

random numbers are used. The default value is 1. If you want to perform more

runs, the number of runs has to be increased in consecutive steps.

[SCA]

opt.hasConstant USe a vector of constants in the estimation of the VAR (1 = Yes,

0 = No; Default = 1).

[SCA]

opt.hasTrend Use a linear trend in the estimation of the VAR (1 = Yes, 0 = No;

Default = 0).

[SCA]

opt.nMaxSignHorizon Maximum horizon of sign restrictions (0 = only contempo-

rary, 1 = contemporary + horizon 1, etc.).

[M, SCA]

opt.nDrawsFromBvar Number of draws to generate posterior distribution for

BVAR. This is only relevant when the estimation method is non-analytical, i.e.

set to 'diffuse' (Default = 1000).

[SCA]
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opt.nTransformationsPerDraw Number of Householder transformations per

model draw (Q-transformation; Default = 1000).

[SCA]

opt.drawFromPosterior Draw from posterior distribution when working through

sign restrictions algorithm (1 = Yes, 0 = work through all draws; Default = 0).

[SCA]

opt.nModelDraws Number of model draws. This is only used if

opt.drawFromPosterior == 1.

[SCA]

opt.checkNegativeQ Check also if sign restrictions are fulfilled for the negative of

a Q column and transform this column of Q to it’s negative if applicable. If this

option is 0 the diagonal of Q will be normalized to have a positive diagonal (Default

= 1).

[SCA]

opt.keepAllValid Keeps all valid transformations when transforming one partic-

ular draw from the posterior (1 = Yes, 0 = only transform until you find a match;

Default = 0).

[SCA]

opt.nMatches Stop search-loop, when a certain number of models fulfill restrictions

(Default = 1,000,000).

[SCA]

opt.nImpulseHorizon Define the horizon over which impulse responses are cal-

culated (0 = only contemporary, 1 = contemporary + horizon 1, etc., Default =

12).

[SCA]

opt.isIRFcum Indicate if a variables should be cumulated (Default =0). Note that

sign restrictions are imposed on the cumulative responses accordingly. E.g. Vars 3

and 4 should be cumulated: opt.isIRFcum = [3,4];

[VEC]

opt.nCTMHorizon Define the horizon over which the closest-to-median impulse re-

sponse is calculated (0 = only contemporary, 1 = contemporary + horizon 1, etc.).

The Default is set to the horizon of the impulse response functions. The closest-to-

median model is selected as suggested in Fry and Pagan (2011).

[SCA]

opt.narrowCTMSearch When looking for the closest-to-median impulse response,

use only impulse responses associated with structural shocks (1 = Yes, 0 = No, use

all impulse responses; Default = 0).

[SCA]

opt.isNoTransform Debug mode. The algorithm does not work through the zero-

and sign restrictions (for debugging; 1 = Yes, 0 = No; Default = 0). Shocks are

orthogonalized using only the Cholesky decomposition.

[SCA]

opt.isSaveResults Save identified models in results.mat (1 = Yes, 0 = No; Default

= 0).

[SCA]

opt.isIRFtable Calculate impulse response functions for all identified models and

save closest-to-median, point-wise median and percentiles in irf.mat (1 = Yes, 0 =

No; Default = 0).

[SCA]

opt.isStructShockTable Calculate structural shocks for all identified models and

save closest-to-median, point-wise median and percentiles in structShocks.mat (1 =

Yes, 0 = No; Default = 0).

[SCA]
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opt.isFevdTable Calculate the FEVD for all identified models and save closest-

to-median, point-wise median and percentiles in fevd.mat (1 = Yes, 0 = No; Default

= 0). Note this slows down the program.

[SCA]

opt.isFevdTexTable Save point-wise median and one standard deviation per-

centiles in a LateX-Table (1 = Yes, 0 = No; Default = 0). Note this option requires

the calculation of the FEVD for all identified models and thereby slows down the

program.

[SCA]

opt.isHistDecompTable Calculate the historical decomposition for all models and

save the closest-to-median, the point-wise median, and percentiles in HistDecom-

pCTM.mat and HistDecompPWM.mat, respectively (1 = Yes, 0 = No; Default =

0). Note this slows down the program.

[SCA]

opt.isImpulsePlots Generate impulse response plots (1 = Yes, 0 = No; Default

= 1; point-wise median values).

[SCA]

opt.isPlotTitle Print labels above impulse responses (1 = Yes, 0 = No; Default

= 0)

[SCA]

opt.isPlotCTM Plot closest-to-median responses (1 = Yes, 0 = No; Default = 0). [SCA]

opt.nPlotRandomModels Choose number of randomly drawn models to include in

the impulse response plots (0 = none; Default = 0).

[SCA]

opt.isFevdPlots Generate plots of the FEVD (1 = Yes, 0 = No; Default = 0;

point-wise median values).

[SCA]

opt.isStructShockPlots Generate plots of structural shocks (1 = Yes, 0 = No;

Default = 0; point-wise median values).

[SCA]

opt.isHistDecompPlots Generate plots of the historical decomposition (1 = Yes,

0 = No; Default = 0; point-wise median values).

[SCA]

4.2 Data Input

MATLAB provides several ways to import data from external sources. Please refer to the

MATLAB help files for this purpose. The data should be finally contained in a matrix labeled

y, in which the variables are ordered along the column-dimension and observations (periods)

across the row-dimension.

4.3 Imposing the restrictions

The sign and zero restrictions are implemented using selection matrices S and Z. S and Z

are three dimensional arrays (i.e. stacked matrices). Dimensions one and two (i.e. rows and

columns) are described above. The third dimension refers to the number of the shock that is

identified.

Examples
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1. First shock: zero restriction on variables 1 and 2 at horizon 0

Z(1,1,1) = 1;

Z(2,2,1) = 1;

2. Second shock: negative reaction of variable 1 up to maximum horizon

for ii = 1:(opt.nMaxSignHorizon+1)

S(ii,1+nVars*(ii−1),2) = −1;
end

3. Second shock: positive reaction of variable 4 at horizons 0 and 1

S(opt.nMaxSignHorizon+2,4,2) = 1;

S(opt.nMaxSignHorizon+3,4+nVars,2) = 1;

% Note: As we already have nMaxSignHorizon+1 sign restrictions for the second

% shock we have to start at nMaxSignHorizon+2.

4. For shocks without restrictions (residual shocks) nothing has to be done, but should be

normalized with a sign restriction on the impact response of one variable (Giacomini and

Kitagawa, 2015).

5 A Simple Application

In this section we describe a small application and all necessary steps to obtain the results

saved in the folder “SimpleApplicationResults”. Specifically, we evaluate the effects of a (i)

sign-identified and (ii) zero- and sign-identified monetary policy shock on output. Furthermore,

to cross-validate our sign-restriction algorithm, we use the same data and restrictions as in Moon

et al. (forthcoming) and Giacomini and Kitagawa (2015). Table 2 summarizes the two different

identification approaches.

Table 2: Identification schemes: Contractionary monetary policy shocks

Identification Shock RGDP INF FFR MONEY

Sign-Restrictions MP Shock ≤ 0 ≥ 0 ≤ 0
Zero- and Sign-Restrictions MP Shock 0 ≤ 0 ≥ 0 ≤ 0

Notes: The empty entry indicates that no restriction is imposed. Sign restriction hold on
impact and the next period. Zero restrictions hold only on impact. All residual shocks are
normalized with a positive response on impact of the respective variable.

We start with the identification approach used in Moon et al. (forthcoming) and Giacomini and

Kitagawa (2015)—the first row in Table 2. Therefore, we estimate a VAR including data on real

GDP per capita, inflation, the federal funds rate and the real money balance. We follow the

description in the online technical appendix of Moon et al. (forthcoming) and obtain all data
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from the St. Louis Federal Reserve Bank database (FRED), except the data on money supply,

which is taken from Cynamon et al. (2006).3 We apply exactly the same data transformation

as suggested in Moon et al. (forthcoming). Table 3 summarizes the dataset.

The VAR with two lags is specified as follows:

Yt = c+
2∑
j=1

AjYt−j + ut, (5)

where Yt is the vector of endogenous variables, c is a constant term, Aj is the matrix of reduced

form coefficients at lag j, and et is a vector of white noise residuals with et ∼ (0,Σe).

Table 3: Data

Variable Definition (Data-Codes)

RGDP Real GDP per capita is calculated by first dividing real GDP (GDPC96) by the
non-institutionalized population series (CNP16OV; using quarterly averages).
The natural log of real GDP per capita is linearly de-trended using an OLS
regression over the period from 1959Q1 to 2006Q4. The cyclical component
is finally multiplied by 100 to convert the deviation to percentages.

INF The inflation rate is calculated using log differences of the GDP deflator
(GDPDEF). The variable is scaled by 400 to yield an annualized rate.

FFR The nominal interest rate is measured with the quarterly averages of the ef-
fective Federal Funds rate (FEDFUNDS)

MONEY Real money balance is defined as the quarterly averages of the sweep-adjusted
M2 money stock (M2S), provided by Cynamon et al. (2006), divided by the
GDP deflator (GDPDEF). In contrast to Moon et al. (forthcoming), we do not
seasonally adjust the M2S series, as the data is already available as seasonally
adjusted series. From the natural log of real money balance, a linear trend is
extracted (using again OLS over the period from 1959Q1 to 2006Q4) and the
cyclical component is multiplied by 100.

Notes: All data are obtained from the St. Louise Federal Reserve Bank database (FRED), except the
sweep-adjusted M2 money stock. The final dataset is restricted to the period from 1965Q1 to 2005Q1.
The variable definitions follow exactly the instruction from Moon et al. (forthcoming), in order to obtain
the same dataset.

First we have to specify all mandatory options (e.g. use the plain StartZeroSignVAR.m file):

opt.modelName = 'SimpleApplicationResults';

opt.modelPath = pwd;

opt.lVars = {'FFR', 'GDP', 'INF', 'M2'};
opt.lShocks = {'MP Shock', 'Shock2', 'Shock3', 'Shock4'};
opt.startDate = '01−01−1965';
opt.endDate = '01−01−2005';
opt.nLags = 2;

opt.estimationMethod = 'diffuse';

3The data is available at http://www.sweepmeasures.com.
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We set opt.modelPath = pwd, such that the present working directory of MATLAB is used as

the destination directory for the results. In addition we set the sign restriction horizon to 1.

opt.nMaxSignHorizon = 1;

Then we have to load the data as prepared in Table 3, and specify matrix y:

y = xlsread('data.xls','A1:D161');

Only Sign Restrictions To impose the sign restrictions we have to specify the S matrix:

for ii = 1:(opt.nMaxSignHorizon+1)

% Positive response of FFR

S(ii,1+nVars*(ii−1),1) = 1;

% Negative response of inflation

S(ii+opt.nMaxSignHorizon+1,3+nVars*(ii−1),1) = −1;
% Negative response of M2

S(ii+2*(opt.nMaxSignHorizon+1),4+nVars*(ii−1),1) = −1;
end

% Normalizations of residual shocks

S(1,2,2)=1;

S(1,3,3)=1;

S(1,4,4)=1;

Zero- and Sign Restrictions Additionally to the sign restrictions we now also impose the

zero restriction that output (RGDP) does not respond contemporaneously to the monetary

policy shock.

for ii = 1:(opt.nMaxSignHorizon+1)

% Positive response of FFR

S(ii,1+nVars*(ii−1),1) = 1;

% Negative response of inflation

S(ii+opt.nMaxSignHorizon+1,3+nVars*(ii−1),1) = −1;
% Negative response of M2

S(ii+2*(opt.nMaxSignHorizon+1),4+nVars*(ii−1),1) = −1;
end

Z(1,2,1) = 1;

% Normalizations of residual shocks

S(1,2,2)=1;

S(1,3,3)=1;

S(1,4,4)=1;

Figure 1 shows the impulse responses that are saved in the respective directory. Panel (A)

replicates the Bayesian error bands shown in Figure 2 of Moon et al. (2013, p. 33) and the
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output response in Panel (B) replicates the Bayesian error bands of the output response shown

in Figure 1 (Model III) of Giacomini and Kitagawa (2015, p. 32).

Figure 1: Impulse responses to monetary policy shocks

(A) Sign-Restrictions (B) Zero- and Sign-Restrictions
Output Inflation Output Inflation

Federal Funds Rate Real Money Federal Funds Rate Real Money

Notes: The light gray and dark gray areas represent 90% and two third
of the identified posterior distribution.

6 General Info

If you apply this routine or use substantial parts of the code please cite this unpublished

manuscript as:

Breitenlechner, M., Geiger, M., Sindermann, F., 2018. ZeroSignVAR: A Zero and Sign Restric-

tion Algorithm Implemented in MATLAB. Unpublished manuscript, University of Innsbruck.

Please let us know if you find any mistakes. We will provide updates on our personal web pages:

http://eeecon.uibk.ac.at/~breitenlechner

http://eeecon.uibk.ac.at/~geiger
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