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Introduction

Zugspitze daily max. T (1900/8-2015/12).

T ∼ N(µ, σ2).
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Model specification

Any parameter of a population distribution D may be modeled by
explanatory variables

y ∼ D (h1(θ1) = η1, h2(θ2) = η2, . . . , hK (θK ) = ηK ) ,

Each parameter is linked to a structured additive predictor

hk(θk) = ηk = ηk(x;βk) = f1k(x;β1k) + . . .+ fJk k(x;βJk k),

j = 1, . . . , Jk and k = 1, . . . ,K and hk(·) are link functions.

Vector of function evaluations fjk = (fjk(x1;βjk), . . . , fjk(xn;βjk))>

fjk =


fjk(x1;βjk)

...

fjk(xn;βjk)

 = fjk(Xjk ;βjk).
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Model specification
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Model specification

Model terms fjk(x;βjk) with LASSO-type penalties Jc(βjk).
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Model specification

Model terms fjk(x;βjk) with LASSO-type penalties Jf (βjk).
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Neural Network Distributional Regression

How to capture complex nonlinearities? Additive predictors
ηk(x;βk) using regression splines have great performance, but can
we do better?

� Feedforward neural networks (FNN) are extensively used in
regression and classification applications.

� FNNs are universal function approximators (Hornik 1991).

� However, estimation is usually difficult and can involve
thousands of parameters.

� Which makes the problem even harder in a full distributional
regression setting (full Bayesian inference?).

⇒ Use FNN model term fjk(Xjk ;βjk) additional to all other effects.
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Neural Network Distributional Regression

Setup:

A FNN model term has a simple structure

fjk(Xjk ;βjk) = Xjkβjk ,

where the columns of Xjk are a decomposition of activation
functions, e.g., using the sigmoid the l-th column (node) is

hl (x) =
1

1 + exp(−(w>l x + bl ))
,

where wl and bl are inner weights and biases.

The activation function hl (·) could also be Gauss (radial basis
function network), sin, etc.
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Neural Network Distributional Regression

Basic idea:

Reduce computational complexity, avoid non-convex optimization
(time consuming, sensitive to initial values, local minima), by
randomly selecting wl and bl , i.e., compute a random design
matrix Xjk .

Although the idea is not new, this is now also known by the
controversial name extreme learning machine (ELM, Huang 2006).

There are theoretical results that ELMs are also universal function
approximators using symmetric intervals for the parameter scope
(Husmeier 1999), a.o.

DAGStat, 5th JOINT STATISTICAL MEETING, LMU Munich, 2019-03-20 12



Neural Network Distributional Regression

Problems: How to randomly select wl and bl ?

Sample wld , bl ∼ U(−1, 1). (Schmidt et al. 1992)

DAGStat, 5th JOINT STATISTICAL MEETING, LMU Munich, 2019-03-20 13



Neural Network Distributional Regression

Problems: How to randomly select wl and bl ?

Sample wld ∼ U(−10, 10) and bl ∼ U(−1, 1)
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Neural Network Distributional Regression

� Too small values for wl and bl lead to poor distribution of the
basis functions (activation functions).

� Too large values will lead to saturated functions.

� Some literature about tuning the sampling range.

� Need a method that controls the flatness and steepness in the
input hypercube.

⇒ Dudek (2017) gives a detailed description of how to select
weights and biases for different activation functions.
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Neural Network Distributional Regression

Sampling weights: Dudek (2017)

For [0, 1] scaled inputs, weights are sampled such that the most
nonlinear and steepest parts are inside the data region.

1 Given r and s, sample sum of input weights∑
[l]
∼ U

(
log

[
1− r

r

]
, s · log

[
1− r

r

])
.

2 For wl sample ζd ∼ U(−1, 1).

3 Set wld = ζd

∑
[l]∑

d ζd
.

4 Set bl = −
∑

d wldzl , where zl ∼ U(0, 1).

Depending on the activation functions, r and s can have different
ranges.
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Neural Network Distributional Regression

Sampling weights: Dudek (2017)
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Neural Network Distributional Regression

Sampling weights: Scaling with r and s.
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Neural Network Distributional Regression

Overfitting:

We use elastic net regularization

λjk1 · JL(βjk) + λjk2 · JR(βjk),

with quadratic approximations of the LASSO penalties (compare
Oelker & Tutz, 2017; Groll et al., 2018)

JL(βjk) ≈ JL(β
(t)
jk ) +

1

2

(
β>jkPjk(βjk)βjk + (β

(t)
jk )>Pjk(β

(t)
jk )β

(t)
jk

)
,

with

Pjk(β
(t)
jk ) = q′jk

(∥∥∥a>jkβ
(t)
jk

∥∥∥
Njk

)
·
Djk(a>jkβ

(t)
jk )

a>jkβ
(t)
jk

· ajka>jk .

E.g., ‖β‖1 = |β| is approximated by
√
β2 + c, hence, IWLS based

updating functions are relatively easy to implement.
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Neural Network Distributional Regression

Simulated example: Sigmoid activation.
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Neural Network Distributional Regression

Simulated example: Out of range predictions.
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Leukemia Survival Example

Data structure:

First analyzed by Henderson et al. (2002), investigate spatial
variation in survival after accounting for subject-specific factors in
northwest England. (n = 1043 patients)

Variable Description.

time Survival time in days.

cens Right censoring status 0=censored, 1=dead.

xcoord Coordinates in x-axis of residence.

ycoord Coordinates in y-axis of residence.

age Age in years.

sex male=1 female=0.

wbc White blood cell count at diagnosis, truncated at 500.

tpi The Townsend score for which higher values indicates
less affluent areas.

district Administrative district of residence.
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Leukemia Survival Example

Survival times:
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Leukemia Survival Example

Spatial distribution:
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Leukemia Survival Example

Cox model:

The hazard of an event (status dead) at time t can be described
with a relative additive risk model of the form:

λ(t) = exp (η(t)) = exp (ηλ(t) + ηγ) ,

i.e., a model for the instantaneous risk conditional on being alive
before time t.

The probability to not survive after time t is

S(t) = Prob(T > t) = exp

(
−
∫ t

0
λ(u)du

)
.
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Leukemia Survival Example

For the leukemia survival example, we use the following additive
predictors

ηλ(time) = f1(time)+f2(time, sex, age, wbc, tpi, xcoord, ycoord)

and

ηγ = β0 + sex + f3(age) + f4(wbc) + f5(tpi) +

f6(xcoord, ycoord) +

f7(sex, age, wbc, tpi, xcoord, ycoord).

Here, functions f2(·) and f7(·) represent a time dependent and a
time constant neural network model term.

For the other functions we use regression splines.
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Leukemia Survival Example

In R we set up the model by
R> library("bamlss")
R> library("survival")
R> data("LeukSurv", package = "spBayesSurv")

R> ftd <- ~ time + sex + age + wbc + tpi + xcoord + ycoord
R> ftc <- ~ sex + age + wbc + tpi + xcoord + ycoord

R> f <- list(
+ Surv(time, cens) ~ s(time) +
+ n(ftd,k=300,pt="lasso",
+ rint=list("sigmoid"=0.1,"gauss"=0.1),
+ sint=list("sigmoid"=c(5,10),"gauss"=5),
+ afun=c("sigmoid","gauss"),ndf=50),
+ gamma ~ sex + s(age) + s(wbc) + s(tpi) + s(xcoord,ycoord,k=100) +
+ n(ftc,k=300,pt="lasso",
+ rint=list("sigmoid"=0.1,"gauss"=0.1),
+ sint=list("sigmoid"=c(5,10),"gauss"=5),
+ afun=c("sigmoid","sin","gauss"),ndf=50)
+ )

R> b <- bamlss(f, data = LeukSurv, family = "cox")
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Leukemia Survival Example

Performance:

We evaluate the performance of the neural network Cox model by
randomly sampling 100 individuals that serve as a hold out sample
and compare using the Brier score. This is done 50 times.

In sample Brier score: GAM=0.24, GAM+NET=0.18.
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Leukemia Survival Example

R> summary(b)

## Subset of full model summary.

Formula lambda:
---
Surv(time, cens) ~ s(time) + n(ftd, k = 300, pt = "lasso",

rint = list(sigmoid = 0.1, gauss = 0.1),
sint = list(sigmoid = c(5, 10), gauss = 5),
afun = c("sigmoid", "gauss"), ndf = 50)

-
Smooth terms:

parameters
s(time).tau21 0.000
s(time).edf 0.984
n(ftd).tau21 76.543
n(ftd).edf 34.061
---
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Leukemia Survival Example

Formula gamma:
---
gamma ~ sex + s(age) + s(wbc) + s(tpi) + s(xcoord, ycoord, k = 100) +

n(ftc, k = 300, pt = "lasso", rint = list(sigmoid = 0.1,
gauss = 0.1), sint = list(sigmoid = c(5, 10), gauss = 5),
afun = c("sigmoid", "sin", "gauss"), ndf = 50)

-
Smooth terms:

parameters
s(age).tau21 0.000
s(age).edf 0.997
s(wbc).tau21 0.000
s(wbc).edf 0.977
s(tpi).tau21 86.135
s(tpi).edf 7.954
s(xcoord,ycoord).tau21 0.147
s(xcoord,ycoord).edf 7.935
n(ftc).tau21 0.000
n(ftc).edf 0.000
---
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Leukemia Survival Example

R> plot(b, model = "lambda", term = "s(time)")
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Leukemia Survival Example

R> plot(b, model = "gamma", term = c("s(age)", "s(wbc)", "s(tpi)"))
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Leukemia Survival Example

R> predict(b, newdata = nd,
+ model = "gamma", term = "s(xcoord,ycoord)")
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Leukemia Survival Example

Accumulated local effects (ALE) plots: (Apley D.W., 2016)
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Leukemia Survival Example

Accumulated local effects (ALE) plots: (Apley D.W., 2016)
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Leukemia Survival Example

Interaction plots: (females, remaining variables fixed at means)
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Leukemia Survival Example

Interaction plots: (females, remaining variables fixed at means)
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Leukemia Survival Example

Interaction plots: (females, remaining variables fixed at means)
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Leukemia Survival Example

Probabilities: Blackpool vs. Manchester.
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Summary & Outlook

� Neural networks really seem to have good approximation skills.

� Capable to find high-order interactions.

� However, this needs to be further investigated.

� Good predictive performance, but interpretation is still
difficult.

� Linears vs. nonlinear direct connectors?

� Tune weights instead of random sampling?

� Full Bayesian inference for weights?

� Deep networks?
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