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Abstract: Bayesian analysis provides a convenient setting for the estimation
of complex generalized additive regression models (GAM). Because of the very
general structure of the additive predictor in GAMs, we propose an unified mod-
eling architecture that can deal with a wide range of types of model terms and
can benefit from different algorithms in order to estimate Bayesian distributional
regression models.
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1 Introduction

Bayesian estimation based on Markov chain Monte Carlo (MCMC) simu-
lation is particularly attractive since it provides valid inference that does
not rely on asymptotic properties and allows extensions such as variable
selection or multilevel models. Existing estimation engines already provide
infrastructures for a number of regression problems exceeding univariate
responses, e.g., for multinomial, multivariate normal or mixed discrete-
continuous distributed variables. In addition, most of the engines support
random effect estimation that can be utilized for setting up complex models
with additive predictors (see, e.g., Fahrmeir et al. 2013).
In order to ease the usage of already existing implementations and code,
as well as to facilitate the development of new algorithms and extensions,
we present an unified and entirely modular architecture for models with
additive predictors which does not restrict to any type of regression prob-
lem. The approach follows the model class of generalized additive model for
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location, scale and shape (GAMLSS, Rigby and Stasinopoulos 2005) but is
more flexible and is sometimes referred to as distributional regression.

2 Model structure

The models discussed assume conditional independence of the response
variable y1, . . . , yn given covariates. Within distributional regression, all
parameters of the response distribution can be modeled by explanatory
variables such that

y ∼ D (h1(θ1) = η1, h2(θ2) = η2, . . . , hK(θK) = ηK) , (1)

where D denotes any distribution available for the response variable and
θk are parameters that are linked to an additive predictor using known
monotonic link functions hk(·). The k-th additive predictor is given by

η = f1(x) + . . .+ fp(x), (2)

where x represents a generic vector of all linear and nonlinear modeled
covariates. The functions fj are possibly smooth functions encompassing
various types of effects, e.g., linear and nonlinear effects of continuous co-
variates, two-dimensional surfaces, spatially correlated effects, varying co-
efficients, random intercepts and random slopes, etc. Using a basis function
approach, the vector of function evaluations can be written in matrix no-
tation fj = Xjβj and can also be represented as a mixed model with

fj = X̃j γ̃j + Ujβ̃j , where γ̃j represents the fixed effects parameters and

β̃j ∼ N(0, τ2j I) independent and i.i.d. random effects (see, e.g., Fahrmeir
et al. 2013).

3 A conceptional Lego toolbox

For Bayesian inference, prior distributions need to be assigned to the re-
gression coefficients. A general setup is obtained by using normal priors for
βj of the form

p(βj |τ2j ) ∝ exp

(
− 1

2τ2j
βj
>Kjβj

)
, (3)

where Kj is the so called penalty matrix that depends on the functional
type chosen for fj . The variance parameter τ2j is equivalent to the inverse
smoothing parameter in a frequentist approach and controls the trade off
between flexibility and smoothness. A common choice of prior for the vari-
ance parameter is a weakly informative inverse Gamma hyperprior.
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The main building block of all estimation engines is the logarithm of the
posterior given by

ln p(ϑ|y) = `(ϑ|y) +

K∑
k=1

pk∑
j=1

{
ln p(βjk|τ2jk) + ln p(τ2jk)

}
, (4)

with log-likelihood `(·) and priors p(·), e.g., given by (3), where ϑ =
(β1, . . . ,βK , τ

2
1, . . . , τ

2
K)>. From a frequentist perspective (4) can be viewed

as a penalized log-likelihood.
Moreover, gradient based algorithms require the evaluation of the first
derivative or score vector as well as the second derivatives, e.g., when ap-
plying a Newton-Raphson type algorithm, or MCMC sampling using IWLS
proposals (see, e.g., Fahrmeir et al. 2013). Because these quantities can be
nicely decomposed using the chain rule and model terms are represented
by an unified approach, algorithms for distributional regression models can
be build by combining the following “Lego-bricks”:

• The log-likelihood function `(ϑ|y).

• The first order derivatives ∂`(ϑ|y)/∂θk, ∂θk/∂ηk and ∂ηk/∂ϑk.

• Second order derivatives ∂2`(ϑ|y)/∂ηk∂η
>
k (and expectations).

• Derivatives for priors, e.g., ln p(βjk|τ2jk) and ln p(τ2jk).

Hence, a modular system can in principle be used to implement various
estimation algorithms (also using existing software). A simple generic al-
gorithm for distributional regression models is outlined by the following
pseudo code:

while(eps > ε & i < maxit) {
for(k in 1:K) {

for(j in 1:p) {
Compute η[k]

-j = η[k] − f [k]j .

Obtain new (β[k]
j , τ2[k]

j )> = u[k]j (y,η[k]
-j ,X

[k]
j ,β[k]

j , τ2[k]
j , family, k).

Update η[k].
}

}
Compute new eps

}

The algorithm does not distinguish between optimization or sampling, be-
cause the functions u[k]j (·) could either return proposals from a MCMC
sampler or updates from an optimization algorithm. Moreover, it is pos-
sible to use different update functions for model terms within predictors,
e.g., IWLS proposals combined with slice sampling or Hamiltonian Monte
Carlo. An implementation of the modular infrastructure is provided in the
R package bamlss (available at https://R-forge.R-project.org at the
time of writing).
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FIGURE 1. Predicted average precipitation for 10th of January and 10th of July.
Animation available at http://eeecon.uibk.ac.at/~umlauf/data/austria.gif

4 Example

As an illustration, we analyze precipitation data taken from the HOM-
START project conducted at the Zentralanstalt für Meteorologie und Geo-
dynamik (ZAMG, see also Umlauf et. al 2012). The aim is to estimate a
good climatology which can be used for subsequent meteorolical models.
Since precipitation data is skewed and exhibits high density at zero ob-
servations, we estimate a censored normal additive regression model with
latent Gaussian variable y? and observed response y, the square root of
daily precipitation observations. The model is given by

y? ∼ N(µ,σ2), µ = ηµ, log(σ) = ησ, y = max(0,y?).

For both µ and σ, we use the following additive predictor:

η = β0 + f1(day, lon, lat) + f2(lon, lat) + f3(day) + f4(alt),

where function f1 is a spatially varying seasonal effect, f2 a spatially cor-
related effect, f3 the seasonal and f4 the altitude effect. The resulting cli-
matology for two particular days of the year are shown in Figure 1.
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