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Example of multilevel/hierarchical data structures

Example of multilevel /hierarchical data
structures

Hedonic regression data for house prices in Austria

Variable of primary interest

house price or log house price

Covariates

e Structural (physical) characteristics, like floor space area,
constructional condition, age etc., and

e neighborhood (locational) characteristics, often on various

levels of aggregation, like the proximity to places of work, the
social composition of the neighborhood etc.
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Example of multilevel/hierarchical data structures

Four-level hierarchical model

level 1: 1np = fi(area) + - + fg(age) + vy + frunicipar(s1) + €1
level 2:  fpunicipai(s1) = fi,(purchase power) + --- + f, (level of education)
+faistrict(s2) + €2

f1, (unemployment rate) + feounty(s3) + €3

level 3: fdistrict(SZ)

level 4: fcounty(s3)

&4

The f's are possibly nonlinear functions of the covariates.

This is an example of multilevel/hierarchical structured additive
regression models.
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Structured additive regression models

Structured additive regression models

e Distributional and structural assumptions, given covariates
and parameters, are based on Generalized Linear Models
e E(y|x,v) = h(n) with structured additive predictor

n = flx)+... .+ h(xp) +vy
In the following we only consider additive models with
y=n+e e~ N0,0°W1)

e v~ parametric part of the predictor

e X; continuous covariate, time scale, location or unit-or cluster
index

e x; may be two (even higher) dimensional for modeling
interactions

o f; one-/two (even higher) dimensional, not necessarily
continuous functions
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Structured additive regression models

Overview: Modeling the functions f;

fi(xj) = f(x) Xj =X nonlinear effect of x

fi(x;) = fspat(s) Xj=s spatial effect of location vari-
ables=(1,2,...,S)

fi(x;) = diag(x2)f(x1) x; = (x1,x2) interaction effect between x;
and xo

fi(x;)) = fjp(x1,x2) xj = (x1,%x2)  nonlinear interaction between
x1 and xo

fi(x;)) =20 xj = (u,x) individual specific random ef-
fect with design matrix Z of
covariate u = (1,2,...,U)
and/or possible x
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Structured additive regression models

General form

e Vector of function evaluations can be written as:
=26, = fi(x)

with Z; as the design matrix, where 3; are unknown
regression coefficients

e Form of Z; only depends on the functional type chosen

e Penalized least squares:

PLS(3,7) = |ly — nl|? + MB K181 + ... + \pBLK,0,
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Structured additive regression models

General form

e Prior for 3 in the corresponding Bayesian approach

2
2777'1-

, 1 rk(K;)/2 1
p(Bjl7}) o exp | —52BiK;B; | I(AB; =0)
J

7'J-2 variance parameter, governs the smoothness of f;, relation

to frequentists by \; = gz/sz
e AB; = 0 is an identifiability constraint, e.g. A= (1,...,1)
such that the B's sum up to zero

e Structure of K; also depends on the type of covariates and on
assumptions about smoothness of f;
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Structured additive regression models

General form

e Basis functions By;(-) in

M;
;= BrmjBmi(x))
m=1

may include e.g. a polynomial, B-spline, Matérn basis (one or
more dimensional), etc.
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Structured additive regression models
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Structured additive

Bi(x)

regression models

BmlB"‘J(Xl)

X

7i(x)

X

12/26



Hierarchical formulation and MCMC inference

Hierarchical formulation and MCMC inference

Multilevel /Hierarchical structured additive model with k hierarchies
within a first stage term Z;3; may be written as

y = 21,61+...+Zpﬁp+v'y—|—s

Bi = ZjPBp, +- +Zjp By, VYT
Bjjroedc  — Zidtoeeoik Pt T T L it Biii i TV ik Vit i T Ytk
Biiic = Migrde T Wi

with € ~ N(0,02W~1) and u;j, . j, ~ N(0,7? K+ )

2T f e Nyl
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Hierarchical formulation and MCMC inference

The full conditionals for the regression coefficients are multivariate
Gaussian. Starting from a first level view, the precision matrix Zﬁj
and mean K, are given by

—1
2
s = o2|zwz + ZK;
B = O j J TR
J
p X 1ZW L
H’Bj - B; r+ 2nﬂj
7
and for the higher levels
2 -1
_ 2 / . ) JJ1sedk—1 - i
Zﬁjvjlv-»-vjk = Tjfisedk—1 Zjajlv---vjkz./allz-wlk_'_ 2 KJ,J1,~~Jk
Jodsee ok
1 1
_ I 2/ ) L
g = zﬁj,jlwfk 2 Zijril® T 2 "B
JoJ15e-Jk—1 JJ1se-adk
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Hierarchical formulation and MCMC inference

Properties

o Reduced complexity in higher stages of the hierarchy:

o Number of “observations” in the higher levels is much less than
the actual number of observations n.

o Full conditionals for regression coefficients are Gaussian
regardless of the response distribution in the first level of the
hierarchy.

e Sparsity
Design matrices and posterior precision matrices are typically
sparse (after reordering of parameters).

e Number of different observations smaller than sample size
Typically the number of different observations Xj(1;)s - - - Xj(nj)
in Z; is much smaller than the total number n of observations,
ie. nj < n.
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Alternative sampling scheme based on transformed parametrization

Alternative sampling scheme based on
transformed parametrization

(i.) Cholesky decomposition RR’ of Z'WZ
(ii.) Singular value decomposition QSQ’ = R™!K(R’)71,
S = diag(s1, .- -,sm): Eigenvalues of (R")"!K(R)~!
Q: Orthogonalmatrix
(iii.) Then set transformed design matrix Z = Z(R)"'Q such
that f =Z3 =23 (8= (R)'QB)
(iv.) and the resulting penalty is now given by

BKB=BQ(R)K(R) Q3 =73S3
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Alternative sampling scheme based on transformed parametrization

Mean and precision matrix are now given by

1

. T M-
Mﬁ"’f 1+ )\J'Smj Hmj

m=1 ;

ey
where \; = 02/71-2 and up,; is the m-th element of the vector

u = 2J-W (y —n+f;), and entries of the corresponding diagonal
precision matrix

0.2

2 = — =1,...,M;
'Bj[m7m] 1+)\j5mj m ’ Y
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Alternative sampling scheme based on transformed parametrization
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Alternative sampling scheme based on transformed parametrization

MCMC sampling scheme

fort=1,...,T {
1. forj=1,...,p{

~(t+1)
118 |-~ N (ugng)

1.2 if level within ﬁj set y* = BJ(-tH) and repeat steps 1-4
13 sz(t+1)| e (a rk(K b+ 2ﬁ Jﬁ(t+1 )
1.4 update n
}
2 (t+1))] . (1) (t)
2. ¥ |-~ (u., :
3. update i

4 02(t+1)‘ .~ IG (a +o b+ %(y _ n(t+1))/(y _ n(t+1)))
}
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Results:

Hedonic regression data for house prices

Results: Hedonic regression data for house
prices
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Results: Hedonic regression data for house prices

Structural continuous covariates
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Results:

Hedonic regression data for house prices

Neighborhood effects
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Results: Hedonic regression data for house prices

Neighborhood effects
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Results: Hedonic regression data for house prices

Neighborhood effects
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Results: Hedonic regression data for house prices
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Results: Hedonic regression data for house prices

Thank you!!!
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