Multilevel Structured Additive Regression

Lang, Stefan ${ }^{1}$ Umlauf, Nikolaus ${ }^{2}$ Wechselberger, Peter ${ }^{3}$ Kneib, Thomas ${ }^{4}$
${ }^{123}$ University of Innsbruck, Austria
${ }^{4}$ Carl von Ossietzky Universität Oldenburg, Germany

March 2010

1. Example of multilevel/hierarchical data structures
2. Structured additive regression models
3. Hierarchical formulation and MCMC inference
4. Alternative sampling scheme based on transformed parametrization
5. Results: Hedonic regression data for house prices

Example of multilevel/hierarchical data structures

Hedonic regression data for house prices in Austria

Variable of primary interest
house price or log house price
Covariates

- Structural (physical) characteristics, like floor space area, constructional condition, age etc., and
- neighborhood (locational) characteristics, often on various levels of aggregation, like the proximity to places of work, the social composition of the neighborhood etc.

Four-level hierarchical model

$$
\begin{aligned}
& \text { level 1: } \operatorname{lnp}= \\
& \text { level 2: } \mathbf{f}_{1}(\text { area })+\cdots+\mathbf{f}_{q}(\text { age })+\mathbf{v} \boldsymbol{\gamma}+\mathbf{f}_{\text {municipal }}\left(s_{1}\right)= \\
&\left.\mathbf{f}_{1_{1}}(\text { purchase power })+\cdots+\mathbf{s}_{1}\right)+\boldsymbol{f}_{1} \\
&+\mathbf{f}_{p_{1}}\left(\text { level of edrict }\left(s_{2}\right)+\varepsilon_{2}\right. \\
& \text { level 3: } \mathbf{f}_{\text {district }}\left(s_{2}\right)= \\
&\text { level 4: } \left.\quad \mathbf{f}_{1_{2}} \text { (unemployment rate }\right)+\mathbf{f}_{\text {county }}\left(\mathrm{s}_{3}\right)+\varepsilon_{3} \\
& \text { lounty }\left(s_{3}\right)= \varepsilon_{4}
\end{aligned}
$$

The \mathbf{f} 's are possibly nonlinear functions of the covariates.
This is an example of multilevel/hierarchical structured additive regression models.

Structured additive regression models

- Distributional and structural assumptions, given covariates and parameters, are based on Generalized Linear Models
- $E(\mathbf{y} \mid \mathbf{x}, \mathbf{v})=h(\boldsymbol{\eta})$ with structured additive predictor

$$
\boldsymbol{\eta}=f_{1}\left(\mathbf{x}_{1}\right)+\ldots+f_{p}\left(\mathbf{x}_{p}\right)+\mathbf{v} \gamma
$$

In the following we only consider additive models with

$$
\mathbf{y}=\boldsymbol{\eta}+\varepsilon \quad \varepsilon \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{W}^{-1}\right)
$$

- $\mathbf{v} \boldsymbol{\gamma}$ parametric part of the predictor
- \mathbf{x}_{j} continuous covariate, time scale, location or unit-or cluster index
- \mathbf{x}_{j} may be two (even higher) dimensional for modeling interactions
- f_{j} one-/two (even higher) dimensional, not necessarily continuous functions

Overview: Modeling the functions f_{j}

$$
\begin{array}{lll}
f_{j}\left(\mathbf{x}_{j}\right)=f(\mathbf{x}) & \mathbf{x}_{j}=\mathbf{x} & \text { nonlinear effect of } \mathbf{x} \\
f_{j}\left(\mathbf{x}_{j}\right)=f_{\text {spat }}(\mathbf{s}) & \mathbf{x}_{j}=\mathbf{s} & \begin{array}{l}
\text { spatial effect of location vari- } \\
\text { able } \mathbf{s}=(1,2, \ldots, S)^{\prime}
\end{array} \\
f_{j}\left(\mathbf{x}_{j}\right)=\operatorname{diag}\left(\mathbf{x}_{2}\right) f\left(\mathbf{x}_{1}\right) & \mathbf{x}_{j}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \begin{array}{l}
\text { interaction effect between } \mathbf{x}_{1} \\
\text { and } \mathbf{x}_{2}
\end{array} \\
f_{j}\left(\mathbf{x}_{j}\right)=f_{1 \mid 2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \mathbf{x}_{j}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \begin{array}{l}
\text { nonlinear interaction between } \\
\mathbf{x}_{1} \text { and } \mathbf{x}_{2}
\end{array} \\
f_{j}\left(\mathbf{x}_{j}\right)=\mathbf{Z} \boldsymbol{\beta} & \mathbf{x}_{j}=(\mathbf{u}, \mathbf{x}) & \begin{array}{l}
\text { individual specific random ef- } \\
\text { fect with design matrix } \mathbf{Z} \text { of } \\
\text { covariate } \mathbf{u}=(1,2, \ldots, U)^{\prime} \\
\text { and/or possible } \mathbf{x}
\end{array}
\end{array}
$$

General form

- Vector of function evaluations can be written as:

$$
\mathbf{f}_{j}=\mathbf{Z}_{j} \boldsymbol{\beta}_{j}=f_{j}\left(\mathbf{x}_{j}\right)
$$

with \mathbf{Z}_{j} as the design matrix, where $\boldsymbol{\beta}_{j}$ are unknown regression coefficients

- Form of \mathbf{Z}_{j} only depends on the functional type chosen
- Penalized least squares:

$$
\operatorname{PLS}(\boldsymbol{\beta}, \gamma)=\|\mathbf{y}-\boldsymbol{\eta}\|^{2}+\lambda_{1} \boldsymbol{\beta}_{1}^{\prime} \mathbf{K}_{1} \boldsymbol{\beta}_{1}+\ldots+\lambda_{p} \boldsymbol{\beta}_{p}^{\prime} \mathbf{K}_{p} \boldsymbol{\beta}_{p}
$$

General form

- Prior for $\boldsymbol{\beta}$ in the corresponding Bayesian approach

$$
p\left(\boldsymbol{\beta}_{j} \mid \tau_{j}^{2}\right) \propto\left(\frac{1}{2 \pi \tau_{j}^{2}}\right)^{r k\left(\mathbf{K}_{j}\right) / 2} \exp \left(-\frac{1}{2 \tau_{j}^{2}} \boldsymbol{\beta}_{j}^{\prime} \mathbf{K}_{j} \boldsymbol{\beta}_{j}\right) I\left(\mathbf{A} \boldsymbol{\beta}_{j}=\mathbf{0}\right)
$$

τ_{j}^{2} variance parameter, governs the smoothness of f_{j}, relation to frequentists by $\lambda_{j}=\sigma^{2} / \tau_{j}^{2}$

- $\mathbf{A} \boldsymbol{\beta}_{j}=\mathbf{0}$ is an identifiability constraint, e.g. $\mathbf{A}=(1, \ldots, 1)^{\prime}$ such that the $\boldsymbol{\beta}$'s sum up to zero
- Structure of \mathbf{K}_{j} also depends on the type of covariates and on assumptions about smoothness of \mathbf{f}_{j}

General form

- Basis functions $B_{m j}(\cdot)$ in

$$
\mathbf{f}_{j}=\sum_{m=1}^{M_{j}} \beta_{m j} B_{m j}\left(\mathbf{x}_{j}\right)
$$

may include e.g. a polynomial, B-spline, Matérn basis (one or more dimensional), etc.

Hierarchical formulation and MCMC inference

Multilevel/Hierarchical structured additive model with k hierarchies within a first stage term $\mathbf{Z}_{j} \boldsymbol{\beta}_{j}$ may be written as

$$
\begin{aligned}
& \mathbf{y}=\mathbf{Z}_{1} \boldsymbol{\beta}_{1}+\ldots+\mathbf{Z}_{p} \boldsymbol{\beta}_{p}+\mathbf{v} \gamma+\boldsymbol{\varepsilon} \\
& \boldsymbol{\beta}_{j}=\mathbf{Z}_{j 1_{1}} \boldsymbol{\beta}_{j 1_{1}}+\ldots+\mathbf{Z}_{j p_{1}} \boldsymbol{\beta}_{j p_{1}}+\mathbf{v}_{j} \gamma_{j}+\mathbf{u}_{j} \\
& \vdots \\
& \beta_{j, j_{1}, \ldots, j_{k}}=\mathbf{z}_{j, j_{1}, \ldots, j_{k} \boldsymbol{\beta}_{j, j_{1}, \ldots, j_{k}}+\ldots+\mathbf{z}_{j, j_{1}, \ldots, j_{k}} \boldsymbol{\beta}_{j, j_{1}, \ldots, j_{k}}+\mathbf{v}_{j, j_{1}, \ldots, j_{k} \gamma_{j, j_{1}, \ldots, j_{k}}+\mathbf{u}_{j, j_{1}, \ldots, j_{k}}}}^{\boldsymbol{\beta}_{j, j_{1}, \ldots, j_{k}}}=\begin{array}{l}
j_{j, j_{1}, \ldots, j_{k}}+\mathbf{u}_{j, j_{1}, \ldots, j_{k}} \\
\text { with } \varepsilon \sim
\end{array} \\
& N\left(\mathbf{0}, \sigma^{2} \mathbf{W}^{-1}\right) \text { and } \mathbf{u}_{j, j_{1}, \ldots, j_{k}} \sim N\left(\mathbf{0}, \tau_{j, j_{1}, \ldots, j_{k}}^{2} \mathbf{K}_{j, j_{1}, \ldots, j_{k}}^{-1}\right)
\end{aligned}
$$

The full conditionals for the regression coefficients are multivariate Gaussian. Starting from a first level view, the precision matrix $\boldsymbol{\Sigma}_{\boldsymbol{\beta}_{j}}$ and mean $\boldsymbol{\mu}_{\boldsymbol{\beta}_{j}}$ are given by

$$
\begin{aligned}
\boldsymbol{\Sigma}_{\boldsymbol{\beta}_{j}} & =\sigma^{2}\left(\mathbf{Z}_{j}^{\prime} \mathbf{W} \mathbf{Z}_{j}+\frac{\sigma^{2}}{\tau_{j}^{2}} \mathbf{K}_{j}\right)^{-1} \\
\boldsymbol{\mu}_{\boldsymbol{\beta}_{j}} & =\boldsymbol{\Sigma}_{\boldsymbol{\beta}_{j}}\left(\frac{1}{\sigma^{2}} \mathbf{Z}_{j}^{\prime} \mathbf{W} \mathbf{r}+\frac{1}{\tau_{j}^{2}} \boldsymbol{\eta}_{\boldsymbol{\beta}_{j}}\right)
\end{aligned}
$$

and for the higher levels

$$
\begin{aligned}
\boldsymbol{\Sigma}_{\boldsymbol{\beta}_{j, j_{1}, \ldots, j_{k}}} & =\tau_{j, j_{1}, \ldots, j_{k-1}}^{2}\left(\mathbf{Z}_{j, j_{1}, \ldots, j_{k}}^{\prime} \mathbf{Z}_{j, j_{1}, \ldots, j_{k}}+\frac{\tau_{j, j_{1}, \ldots, j_{k-1}}^{2}}{\tau_{j, j_{1}, \ldots, j_{k}}^{2}} \mathbf{K}_{j, j_{1}, \ldots, j_{k}}\right)^{-1} \\
\boldsymbol{\mu}_{\boldsymbol{\beta}_{j, j_{1}, \ldots, j_{k}}} & =\boldsymbol{\Sigma}_{\boldsymbol{\beta}_{j, j_{1}, \ldots, j_{k}}}\left(\frac{1}{\tau_{j, j_{1}, \ldots, j_{k-1}}^{2}} \mathbf{Z}_{j, j_{1}, \ldots, j_{k}}^{\prime} \mathbf{r}+\frac{1}{\tau_{j, j_{1}, \ldots, j_{k}}^{2}} \boldsymbol{\eta}_{\boldsymbol{\beta}_{j, j_{1}, \ldots, j_{k}}}\right)
\end{aligned}
$$

Properties

- Reduced complexity in higher stages of the hierarchy:
- Number of "observations" in the higher levels is much less than the actual number of observations n.
- Full conditionals for regression coefficients are Gaussian regardless of the response distribution in the first level of the hierarchy.
- Sparsity

Design matrices and posterior precision matrices are typically sparse (after reordering of parameters).

- Number of different observations smaller than sample size Typically the number of different observations $x_{j\left(1_{j}\right)}, \ldots, x_{j\left(n_{j}\right)}$ in \mathbf{Z}_{j} is much smaller than the total number n of observations, i.e. $n_{j} \ll n$.

Alternative sampling scheme based on transformed parametrization

(i.) Cholesky decomposition $\mathbf{R R}^{\prime}$ of $\mathbf{Z}^{\prime} \mathbf{W Z}$
(ii.) Singular value decomposition $\mathbf{Q S Q}^{\prime}=\mathbf{R}^{-1} \mathbf{K}\left(\mathbf{R}^{\prime}\right)^{-1}$, $\mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{M}\right)$: Eigenvalues of $\left(\mathbf{R}^{\prime}\right)^{-1} \mathbf{K}\left(\mathbf{R}^{\prime}\right)^{-1}$
Q: Orthogonalmatrix
(iii.) Then set transformed design matrix $\tilde{\mathbf{Z}}=\mathbf{Z}\left(\mathbf{R}^{\prime}\right)^{-1} \mathbf{Q}$ such that $\mathbf{f}=\mathbf{Z} \boldsymbol{\beta}=\tilde{\mathbf{Z}} \tilde{\boldsymbol{\beta}}\left(\boldsymbol{\beta}=\left(\mathbf{R}^{\prime}\right)^{-1} \mathbf{Q} \tilde{\boldsymbol{\beta}}\right)$
(iv.) and the resulting penalty is now given by $\boldsymbol{\beta}^{\prime} \mathbf{K} \boldsymbol{\beta}=\tilde{\boldsymbol{\beta}}^{\prime} \mathbf{Q}^{\prime}\left(\mathbf{R}^{\prime}\right)^{-1} \mathbf{K}\left(\mathbf{R}^{\prime}\right)^{-1} \mathbf{Q} \tilde{\boldsymbol{\beta}}=\tilde{\boldsymbol{\beta}}^{\prime} \mathbf{S} \tilde{\boldsymbol{\beta}}$

Mean and precision matrix are now given by

$$
\mu_{\tilde{\beta}_{m j}}=\frac{1}{1+\lambda_{j} s_{m j}} \cdot u_{m j} \quad m=1, \ldots, M_{j}
$$

where $\lambda_{j}=\sigma^{2} / \tau_{j}^{2}$ and $u_{m j}$ is the m-th element of the vector $\mathbf{u}_{j}=\tilde{\mathbf{Z}}_{j} \mathbf{W}\left(\mathbf{y}-\boldsymbol{\eta}+\mathbf{f}_{j}\right)$, and entries of the corresponding diagonal precision matrix

$$
\boldsymbol{\Sigma}_{\tilde{\boldsymbol{\beta}}_{j}}[m, m]=\frac{\sigma^{2}}{1+\lambda_{j} s_{m j}} \quad m=1, \ldots, M_{j}
$$

MCMC sampling scheme

$$
\text { for } t=1, \ldots, T\{
$$

1. for $j=1, \ldots, p\{$

$$
1.1 \quad \tilde{\boldsymbol{\beta}}_{j}^{(t+1)} \mid \cdot \sim N\left(\mu_{\tilde{\beta}_{j}}^{(t)}, \boldsymbol{\Sigma}_{\tilde{\boldsymbol{\beta}}_{j}}^{(t)}\right)
$$

1.2 if level within $\tilde{\boldsymbol{\beta}}_{j}$ set $\mathbf{y}^{*}=\tilde{\boldsymbol{\beta}}_{j}^{(t+1)}$ and repeat steps 1-4
$1.3 \tau_{j}^{2(t+1)} \left\lvert\, \cdot \sim I G\left(a+\frac{r k\left(\mathbf{K}_{j}\right)}{2}, b+\frac{1}{2} \tilde{\boldsymbol{\beta}}_{j}^{(t+1)} \mathbf{K}_{j} \tilde{\boldsymbol{\beta}}_{j}^{(t+1)}\right)\right.$
1.4 update $\boldsymbol{\eta}$
\}
2. $\tilde{\gamma}^{(t+1))} \mid \cdot \sim N\left(\boldsymbol{\mu}_{\tilde{\gamma}}^{(t)}, \boldsymbol{\Sigma}_{\tilde{\gamma}}^{(t)}\right)$
3. update $\boldsymbol{\eta}$
4. $\sigma^{2(t+1)} \left\lvert\, \cdot \sim I G\left(a+\frac{n}{2}, b+\frac{1}{2}\left(\mathbf{y}-\boldsymbol{\eta}^{(t+1)}\right)^{\prime}\left(\mathbf{y}-\boldsymbol{\eta}^{(t+1)}\right)\right)\right.$
\}

Results: Hedonic regression data for house prices

Structural continuous covariates

Structural continuous covariates

Neighborhood effects

Neighborhood effects

Neighborhood effects

Results: Hedonic regression data for house prices
 \title{
Thank you!!!
}
 \title{
Thank you!!!
}

