Multilevel Structured Additive Regression

Lang, Stefan 1 Umlauf, Nikolaus 2 Wechselberger, Peter 3 Kneib, Thomas 4

¹²³University of Innsbruck, Austria⁴Carl von Ossietzky Universität Oldenburg, Germany

March 2010

- 1. Example of multilevel/hierarchical data structures
- 2. Structured additive regression models
- 3. Hierarchical formulation and MCMC inference
- 4. Alternative sampling scheme based on transformed parametrization
- 5. Results: Hedonic regression data for house prices

Example of multilevel/hierarchical data structures

Hedonic regression data for house prices in Austria

Variable of primary interest

house price or log house price

Covariates

- Structural (physical) characteristics, like floor space area, constructional condition, age etc., and
- neighborhood (locational) characteristics, often on various levels of aggregation, like the proximity to places of work, the social composition of the neighborhood etc.

Four-level hierarchical model

$$\texttt{level 1: lnp} \qquad = \quad \mathbf{f}_1(\texttt{area}) + \dots + \mathbf{f}_q(\texttt{age}) + \mathbf{v} \boldsymbol{\gamma} + \mathbf{f}_{\texttt{municipal}}(\mathbf{s}_1) + \boldsymbol{\varepsilon}_1$$

- $\texttt{level 3:} \quad \texttt{f}_{\texttt{district}}(\texttt{s}_2) \quad = \quad \texttt{f}_{1_2}(\texttt{unemployment rate}) + \texttt{f}_{\texttt{county}}(\texttt{s}_3) + \pmb{\varepsilon}_3$
- level 4: $\mathbf{f}_{\text{county}}(\mathbf{s}_3) = \boldsymbol{\varepsilon}_4$

The \mathbf{f} 's are possibly nonlinear functions of the covariates.

This is an example of *multilevel/hierarchical structured additive regression models*.

Structured additive regression models

- Distributional and structural assumptions, given covariates and parameters, are based on Generalized Linear Models
- $E(\mathbf{y}|\mathbf{x},\mathbf{v}) = h(\eta)$ with structured additive predictor

$$\eta = f_1(\mathbf{x}_1) + \ldots + f_p(\mathbf{x}_p) + \mathbf{v} \boldsymbol{\gamma}$$

In the following we only consider additive models with

$$\mathbf{y} = oldsymbol{\eta} + oldsymbol{arepsilon} ~~ oldsymbol{arepsilon} \sim \mathcal{N}(oldsymbol{0}, \sigma^2 \mathbf{W}^{-1})$$

- $\mathbf{v} \boldsymbol{\gamma}$ parametric part of the predictor
- **x**_j continuous covariate, time scale, location or unit-or cluster index
- **x**_j may be two (even higher) dimensional for modeling interactions
- *f_j* one-/two (even higher) dimensional, not necessarily continuous functions

Overview: Modeling the functions f_j

$f_j(\mathbf{x}_j) = f(\mathbf{x})$	$\mathbf{x}_j = \mathbf{x}$	nonlinear effect of \mathbf{x}
$f_j(\mathbf{x}_j) = f_{spat}(\mathbf{s})$	$\mathbf{x}_j = \mathbf{s}$	spatial effect of location variable $\mathbf{s} = (1, 2, \dots, S)'$
$f_j(\mathbf{x}_j) = diag(\mathbf{x}_2)f(\mathbf{x}_1)$	$\mathbf{x}_j = (\mathbf{x}_1, \mathbf{x}_2)$	interaction effect between \textbf{x}_1 and \textbf{x}_2
$f_j(\mathbf{x}_j) = f_{1 2}(\mathbf{x}_1, \mathbf{x}_2)$	$\mathbf{x}_j = (\mathbf{x}_1, \mathbf{x}_2)$	nonlinear interaction between \textbf{x}_1 and \textbf{x}_2
$f_j(\mathbf{x}_j) = \mathbf{Z}eta$	$\mathbf{x}_j = (\mathbf{u}, \mathbf{x})$	individual specific random effect with design matrix Z of covariate $\mathbf{u} = (1, 2, \dots, U)'$ and/or possible \mathbf{x}

General form

• Vector of function evaluations can be written as:

$$\mathbf{f}_j = \mathbf{Z}_j \boldsymbol{\beta}_j = f_j(\mathbf{x}_j)$$

with \mathbf{Z}_{j} as the design matrix, where β_{j} are unknown regression coefficients

- Form of **Z**_j only depends on the functional type chosen
- Penalized least squares:

$$\mathsf{PLS}(\beta, \gamma) = ||\mathbf{y} - \eta||^2 + \lambda_1 \beta_1' \mathbf{K}_1 \beta_1 + \ldots + \lambda_p \beta_p' \mathbf{K}_p \beta_p$$

General form

- Prior for ${\boldsymbol{\beta}}$ in the corresponding Bayesian approach

$$p(m{eta}_j | au_j^2) \propto \left(rac{1}{2\pi au_j^2}
ight)^{rk(\mathbf{K}_j)/2} exp\left(-rac{1}{2 au_j^2}m{eta}_j'\mathbf{K}_jm{eta}_j
ight) I(\mathbf{A}m{eta}_j = \mathbf{0})$$

 τ_j^2 variance parameter, governs the smoothness of f_j , relation to frequentists by $\lambda_j=\sigma^2/\tau_i^2$

- $\mathbf{A}\beta_j = \mathbf{0}$ is an identifiability constraint, e.g. $\mathbf{A} = (1, \dots, 1)'$ such that the β 's sum up to zero
- Structure of K_j also depends on the type of covariates and on assumptions about smoothness of f_j

General form

• Basis functions $B_{mj}(\cdot)$ in

$$\mathbf{f}_j = \sum_{m=1}^{M_j} \beta_{mj} B_{mj}(\mathbf{x}_j)$$

may include e.g. a polynomial, B-spline, Matérn basis (one or more dimensional), etc.

Hierarchical formulation and MCMC inference

Multilevel/Hierarchical structured additive model with k hierarchies within a first stage term $\mathbf{Z}_{j}\beta_{i}$ may be written as

$$\mathbf{y} = \mathbf{Z}_{1}\beta_{1} + \ldots + \mathbf{Z}_{p}\beta_{p} + \mathbf{v}\gamma + \varepsilon$$

$$\beta_{j} = \mathbf{Z}_{j1_{1}}\beta_{j1_{1}} + \ldots + \mathbf{Z}_{jp_{1}}\beta_{jp_{1}} + \mathbf{v}_{j}\gamma_{j} + \mathbf{u}_{j}$$

$$\vdots$$

$$\beta_{j,j_{1},\ldots,j_{k}} = \mathbf{z}_{j,j_{1},\ldots,j_{k}}\beta_{j,j_{1},\ldots,j_{k}} + \ldots + \mathbf{z}_{j,j_{1},\ldots,j_{k}}\beta_{j,j_{1},\ldots,j_{k}} + \mathbf{v}_{j,j_{1},\ldots,j_{k}}\gamma_{j,j_{1},\ldots,j_{k}} + \mathbf{u}_{j,j_{1},\ldots,j_{k}}$$

$$\beta_{j,j_{1},\ldots,j_{k}} = \eta_{j,j_{1},\ldots,j_{k}} + \mathbf{u}_{j,j_{1},\ldots,j_{k}}$$

with $\varepsilon \sim N(\mathbf{0}, \sigma^{2}\mathbf{W}^{-1})$ and $\mathbf{u}_{j,j_{1},\ldots,j_{k}} \sim N(\mathbf{0}, \tau^{2}_{j,j_{1},\ldots,j_{k}}\mathbf{K}^{-1}_{j,j_{1},\ldots,j_{k}})$

The full conditionals for the regression coefficients are multivariate Gaussian. Starting from a first level view, the precision matrix Σ_{β_j} and mean μ_{β_i} are given by

$$\begin{split} \mathbf{\Sigma}_{\boldsymbol{\beta}_{j}} &= \sigma^{2} \left(\mathbf{Z}_{j}^{\prime} \mathbf{W} \mathbf{Z}_{j} + \frac{\sigma^{2}}{\tau_{j}^{2}} \mathbf{K}_{j} \right)^{-1} \\ \boldsymbol{\mu}_{\boldsymbol{\beta}_{j}} &= \mathbf{\Sigma}_{\boldsymbol{\beta}_{j}} \left(\frac{1}{\sigma^{2}} \mathbf{Z}_{j}^{\prime} \mathbf{W} \mathbf{r} + \frac{1}{\tau_{j}^{2}} \boldsymbol{\eta}_{\boldsymbol{\beta}_{j}} \right) \end{split}$$

and for the higher levels

$$\boldsymbol{\Sigma}_{\boldsymbol{\beta}_{j,j_1,\dots,j_k}} = \tau_{j,j_1,\dots,j_{k-1}}^2 \left(\boldsymbol{Z}'_{j,j_1,\dots,j_k} \boldsymbol{Z}_{j,j_1,\dots,j_k} + \frac{\tau_{j,j_1,\dots,j_{k-1}}^2}{\tau_{j,j_1,\dots,j_k}^2} \boldsymbol{K}_{j,j_1,\dots,j_k} \right)^{-1} \\ \boldsymbol{\mu}_{\boldsymbol{\beta}_{j,j_1,\dots,j_k}} = \boldsymbol{\Sigma}_{\boldsymbol{\beta}_{j,j_1,\dots,j_k}} \left(\frac{1}{\tau_{j,j_1,\dots,j_{k-1}}^2} \boldsymbol{Z}'_{j,j_1,\dots,j_k} \mathbf{r} + \frac{1}{\tau_{j,j_1,\dots,j_k}^2} \boldsymbol{\eta}_{\boldsymbol{\beta}_{j,j_1,\dots,j_k}} \right)$$

Properties

- Reduced complexity in higher stages of the hierarchy:
 - Number of "observations" in the higher levels is much less than the actual number of observations *n*.
 - Full conditionals for regression coefficients are Gaussian regardless of the response distribution in the first level of the hierarchy.
- Sparsity

Design matrices and posterior precision matrices are typically sparse (after reordering of parameters).

 Number of different observations smaller than sample size Typically the number of different observations x_{j(1j)},..., x_{j(nj)} in Z_j is much smaller than the total number n of observations, i.e. n_j ≪ n.

Alternative sampling scheme based on transformed parametrization

- (i.) Cholesky decomposition $\boldsymbol{R}\boldsymbol{R}'$ of $\boldsymbol{Z}'\boldsymbol{W}\boldsymbol{Z}$
- (ii.) Singular value decomposition $\mathbf{QSQ}' = \mathbf{R}^{-1}\mathbf{K}(\mathbf{R}')^{-1}$, $\mathbf{S} = diag(s_1, \dots, s_M)$: Eigenvalues of $(\mathbf{R}')^{-1}\mathbf{K}(\mathbf{R}')^{-1}$ \mathbf{Q} : Orthogonalmatrix
- (iii.) Then set transformed design matrix $\tilde{\mathbf{Z}} = \mathbf{Z}(\mathbf{R}')^{-1}\mathbf{Q}$ such that $\mathbf{f} = \mathbf{Z}\boldsymbol{\beta} = \tilde{\mathbf{Z}}\tilde{\boldsymbol{\beta}} \ (\boldsymbol{\beta} = (\mathbf{R}')^{-1}\mathbf{Q}\tilde{\boldsymbol{\beta}})$
- (iv.) and the resulting penalty is now given by $\beta' \mathbf{K} \beta = \tilde{\beta}' \mathbf{Q}' (\mathbf{R}')^{-1} \mathbf{K} (\mathbf{R}')^{-1} \mathbf{Q} \tilde{\beta} = \tilde{\beta}' \mathbf{S} \tilde{\beta}$

Mean and precision matrix are now given by

$$\mu_{\tilde{\beta}_{mj}} = \frac{1}{1 + \lambda_j s_{mj}} \cdot u_{mj} \qquad m = 1, \dots, M_j$$

where $\lambda_j = \sigma^2 / \tau_j^2$ and u_{mj} is the *m*-th element of the vector $\mathbf{u}_j = \tilde{\mathbf{Z}}_j \mathbf{W} (\mathbf{y} - \boldsymbol{\eta} + \mathbf{f}_j)$, and entries of the corresponding diagonal precision matrix

$$\mathbf{\Sigma}_{\tilde{\boldsymbol{eta}}_j}[m,m] = rac{\sigma^2}{1+\lambda_j s_{mj}} \qquad m=1,\ldots,M_j$$

Alternative sampling scheme based on transformed parametrization

MCMC sampling scheme

for
$$t = 1, ..., T$$
 {
1. for $j = 1, ..., p$ {
1.1 $\tilde{\beta}_{j}^{(t+1)} | \cdot \sim N\left(\mu_{\tilde{\beta}_{j}}^{(t)}, \boldsymbol{\Sigma}_{\tilde{\beta}_{j}}^{(t)}\right)$
1.2 if level within $\tilde{\beta}_{j}$ set $\mathbf{y}^{*} = \tilde{\beta}_{j}^{(t+1)}$ and repeat steps 1-4
1.3 $\tau_{j}^{2(t+1)} | \cdot \sim IG\left(a + \frac{rk(\mathbf{K}_{j})}{2}, b + \frac{1}{2}\tilde{\beta}_{j}^{\prime(t+1)}\mathbf{K}_{j}\tilde{\beta}_{j}^{(t+1)}\right)$
1.4 update η
2. $\tilde{\gamma}^{(t+1))} | \cdot \sim N\left(\mu_{\tilde{\gamma}}^{(t)}, \boldsymbol{\Sigma}_{\tilde{\gamma}}^{(t)}\right)$
3. update η
4. $\sigma^{2(t+1)} | \cdot \sim IG\left(a + \frac{n}{2}, b + \frac{1}{2}(\mathbf{y} - \eta^{(t+1)})'(\mathbf{y} - \eta^{(t+1)})\right)$

Results: Hedonic regression data for house prices

Structural continuous covariates

Structural continuous covariates

Neighborhood effects

Neighborhood effects

Neighborhood effects

Results: Hedonic regression data for house prices

Thank you!!!