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Example of multilevel/hierarchical data structures

Example of multilevel/hierarchical data
structures

Hedonic regression data for house prices in Austria

Variable of primary interest

house price or log house price

Covariates

• Structural (physical) characteristics, like floor space area,
constructional condition, age etc., and

• neighborhood (locational) characteristics, often on various
levels of aggregation, like the proximity to places of work, the
social composition of the neighborhood etc.
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Example of multilevel/hierarchical data structures

Four-level hierarchical model

level 1: lnp = f1(area) + · · ·+ fq(age) + vγ + fmunicipal(s1) + ε1

level 2: fmunicipal(s1) = f11 (purchase power) + · · ·+ fp1 (level of education)

+fdistrict(s2) + ε2

level 3: fdistrict(s2) = f12 (unemployment rate) + fcounty(s3) + ε3

level 4: fcounty(s3) = ε4

The f’s are possibly nonlinear functions of the covariates.

This is an example of multilevel/hierarchical structured additive
regression models.
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Example of multilevel/hierarchical data structures
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Structured additive regression models

Structured additive regression models

• Distributional and structural assumptions, given covariates
and parameters, are based on Generalized Linear Models

• E (y|x, v) = h(η) with structured additive predictor

η = f1(x1) + . . .+ fp(xp) + vγ

In the following we only consider additive models with

y = η + ε ε ∼ N(0, σ2W−1)

• vγ parametric part of the predictor
• xj continuous covariate, time scale, location or unit-or cluster

index
• xj may be two (even higher) dimensional for modeling

interactions
• fj one-/two (even higher) dimensional, not necessarily

continuous functions
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Structured additive regression models

Overview: Modeling the functions fj

fj(xj) = f (x) xj = x nonlinear effect of x

fj(xj) = fspat(s) xj = s spatial effect of location vari-
able s = (1, 2, . . . , S)′

fj(xj) = diag(x2)f (x1) xj = (x1, x2) interaction effect between x1

and x2

fj(xj) = f1|2(x1, x2) xj = (x1, x2) nonlinear interaction between
x1 and x2

fj(xj) = Zβ xj = (u, x) individual specific random ef-
fect with design matrix Z of
covariate u = (1, 2, . . . , U)′

and/or possible x
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Structured additive regression models

General form

• Vector of function evaluations can be written as:

fj = Zjβj = fj(xj)

with Zj as the design matrix, where βj are unknown
regression coefficients

• Form of Zj only depends on the functional type chosen

• Penalized least squares:

PLS(β,γ) = ||y − η||2 + λ1β
′
1K1β1 + . . .+ λpβ

′
pKpβp
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Structured additive regression models

General form

• Prior for β in the corresponding Bayesian approach

p(βj |τ2
j ) ∝

(
1

2πτ2
j

)rk(Kj )/2

exp

(
− 1

2τ2
j

β′jKjβj

)
I (Aβj = 0)

τ2
j variance parameter, governs the smoothness of fj , relation

to frequentists by λj = σ2/τ2
j

• Aβj = 0 is an identifiability constraint, e.g. A = (1, . . . , 1)′

such that the β‘s sum up to zero

• Structure of Kj also depends on the type of covariates and on
assumptions about smoothness of fj
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Structured additive regression models

General form

• Basis functions Bmj(·) in

fj =

Mj∑
m=1

βmjBmj(xj)

may include e.g. a polynomial, B-spline, Matérn basis (one or
more dimensional), etc.
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Structured additive regression models
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Structured additive regression models
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Hierarchical formulation and MCMC inference

Hierarchical formulation and MCMC inference

Multilevel/Hierarchical structured additive model with k hierarchies
within a first stage term Zjβj may be written as

y = Z1β1 + . . .+ Zpβp + vγ + ε

βj = Zj11βj11
+ . . .+ Zjp1βjp1

+ vjγ j + uj

...

βj,j1,...,jk
= Zj,j1,...,jk

βj,j1,...,jk
+ . . . + Zj,j1,...,jk

βj,j1,...,jk
+ vj,j1,...,jk

γ j,j1,...,jk
+ uj,j1,...,jk

βj ,j1,...,jk = ηj ,j1,...,jk + uj ,j1,...,jk

with ε ∼ N(0, σ2W−1) and uj ,j1,...,jk ∼ N(0, τ2
j ,j1,...,jk

K−1
j ,j1,...,jk

)
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Hierarchical formulation and MCMC inference

The full conditionals for the regression coefficients are multivariate
Gaussian. Starting from a first level view, the precision matrix Σβj

and mean µβj
are given by

Σβj
= σ2

(
Z′jWZj +

σ2

τ2
j

Kj

)−1

µβj
= Σβj

(
1

σ2
Z′jWr +

1

τ2
j

ηβj

)

and for the higher levels

Σβj,j1,...,jk
= τ2

j ,j1,...,jk−1

(
Z′j ,j1,...,jk Zj ,j1,...,jk +

τ2
j ,j1,...,jk−1

τ2
j ,j1,...,jk

Kj ,j1,...,jk

)−1

µβj,j1,...,jk
= Σβj,j1,...,jk

(
1

τ2
j ,j1,...,jk−1

Z′j ,j1,...,jk r +
1

τ2
j ,j1,...,jk

ηβj,j1,...,jk

)
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Hierarchical formulation and MCMC inference

Properties

• Reduced complexity in higher stages of the hierarchy:
• Number of “observations” in the higher levels is much less than

the actual number of observations n.
• Full conditionals for regression coefficients are Gaussian

regardless of the response distribution in the first level of the
hierarchy.

• Sparsity
Design matrices and posterior precision matrices are typically
sparse (after reordering of parameters).

• Number of different observations smaller than sample size
Typically the number of different observations xj(1j ), . . . , xj(nj )

in Zj is much smaller than the total number n of observations,
i.e. nj � n.
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Alternative sampling scheme based on transformed parametrization

Alternative sampling scheme based on
transformed parametrization

(i.) Cholesky decomposition RR′ of Z′WZ

(ii.) Singular value decomposition QSQ′ = R−1K(R′)−1,
S = diag(s1, . . . , sM): Eigenvalues of (R′)−1K(R′)−1

Q: Orthogonalmatrix

(iii.) Then set transformed design matrix Z̃ = Z(R′)−1Q such
that f = Zβ = Z̃β̃ (β = (R′)−1Qβ̃)

(iv.) and the resulting penalty is now given by

β′Kβ = β̃
′
Q′(R′)−1K(R′)−1Qβ̃ = β̃

′
Sβ̃
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Alternative sampling scheme based on transformed parametrization

Mean and precision matrix are now given by

µβ̃mj
=

1

1 + λjsmj
· umj m = 1, . . . ,Mj

where λj = σ2/τ2
j and umj is the m-th element of the vector

uj = Z̃jW (y − η + fj), and entries of the corresponding diagonal
precision matrix

Σβ̃j
[m,m] =

σ2

1 + λjsmj
m = 1, . . . ,Mj
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Alternative sampling scheme based on transformed parametrization
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Alternative sampling scheme based on transformed parametrization

MCMC sampling scheme

for t = 1, . . . ,T {
1. for j = 1, . . . , p {

1.1 β̃
(t+1)

j | · ∼ N

(
µ

(t)

β̃j
,Σ

(t)

β̃j

)
1.2 if level within β̃j set y∗ = β̃

(t+1)

j and repeat steps 1-4

1.3 τ 2
j

(t+1)| · ∼ IG

(
a +

rk(Kj )
2 , b + 1

2 β̃
′
j

(t+1)
Kj β̃

(t+1)

j

)
1.4 update η
}

2. γ̃(t+1))| · ∼ N
(
µ

(t)
γ̃ ,Σ

(t)
γ̃

)
3. update η

4. σ2(t+1)| · ∼ IG
(
a + n

2 , b + 1
2(y − η(t+1))′(y − η(t+1))

)
}
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Results: Hedonic regression data for house prices

Results: Hedonic regression data for house
prices

Structural continuous covariates
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Results: Hedonic regression data for house prices

Structural continuous covariates
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Results: Hedonic regression data for house prices

Neighborhood effects
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Results: Hedonic regression data for house prices

Neighborhood effects
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Results: Hedonic regression data for house prices

Neighborhood effects
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Results: Hedonic regression data for house prices
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Results: Hedonic regression data for house prices

Thank you!!!
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