
BAMLSS
Bayesian Additive Models for Location Scale and Shape
(and Beyond)

Nikolaus Umlauf, Nadja Klein,
Stefan Lang, Achim Zeileis

http://eeecon.uibk.ac.at/~umlauf/

http://eeecon.uibk.ac.at/~umlauf/

Overview

Introduction

Distributional regression

General architecture

R package BayesR

Example

Introduction

A not complete list of software packages dealing with Bayesian

regression models:

bayesm, univariate and multivariate, SUR, multinomial logit, . . .

bayesSurv, survival regression, . . .

MCMCpack, linear regression, logit, ordinal probit, probit, Poisson

regression, . . .

MCMCglmm, generalized linear mixed models (GLMM).

spikeSlabGAM, Bayesian variable selection, model choice, in

generalized additive mixed models (GAMM), . . .

gammSlice, generalized additive mixed models (GAMM).

BayesX, structured additive distributional regression (STAR), . . .

INLA, generalized additive mixed models (GAMM), . . .

WinBUGS, JAGS, STAN, general purpose sampling engines.

...

Introduction

Most Bayesian software packages provide support for the estimation of

so called mixed models (random effects), i.e. incorporating linear

predictors of the form

η = Xβ + Uγ,

where Xβ are fixed effects, e.g. p(β) ∝ const, and Uγ are the random

effects, γ ∼ N(0,Q(τ 2)).

Few Bayesian software packages provide support for the estimation of

semiparametric regression models with structured additive predictor

η = f1(z) + . . .+ fp(z) + x⊤β,

where fj are possibly smooth functions and z represents a generic

vector of all nonlinear modeled covariates.

Introduction

Introduction

Within the basis function approach, the vector of function evaluations

fj = (fj(z1), . . . , fj(zn)) of the i = 1, . . . , n observations can be written

in matrix notation

fj = Zjγ j ,

with Zj as the design matrix, where γ j are unknown regression

coefficients. Form of Zj only depends on the functional type chosen.

Introduction

Penalized least squares:

PLS(γ,λ) = ||y − η||2 + λ1γ
′

1K1γ1 + . . .+ λpγ
′

pKpγp.

A general Prior for γ in the corresponding Bayesian approach

p(γ j |τ
2
j) ∝ exp

(

−
1

2τ 2
j

γ ′

jKjγ j

)

,

τ 2
j variance parameter, governs the smoothness of fj .

Structure of Kj also depends on the type of covariates and on

assumptions about smoothness of fj .

The variance parameter τ 2
j is equivalent to the inverse smoothing

parameter in a frequentist approach.

Introduction

However, any basis function representation can be transformed into a

mixed model representation

fj = Zjγ j = Zj(X̃β + Ũγ̃) = Xβ + Uγ̃,

with fixed effects β and random effects γ̃ ∼ N(0, τ 2I).

So the number of software packages that can estimate semiparametric

models is actually quite large.

The number of different models that can be fit with these engines is

even larger.

Introduction

The basic ideas are:

Design a framework that makes it (a) easy to use different

estimation engines and (b) fit models with a structured additive

predictor.

Therefore, we need to employ symbolic descriptions that do not

restrict to any specific type of model and term structure.

I.e., the aim is to use specialized/optimized engines to apply

Bayesian structured additive distributional regression a.k.a.

Bayesian additive models for location scale and shape (BAMLSS)

and beyond.

The approach should have maximum flexibility/extendability,

also concerning functional types.

Distributional regression

Within this framework any parameter of a population distribution may be

modeled by explanatory variables

y ∼ D (g1(θ1) = η1, g2(θ2) = η2, . . . , gK (θK) = ηK) ,

where D denotes any parametric distribution available for the response

variable.

Each parameter is linked to a structured additive predictor

gk(θk) = ηk = Z1kγ1k + . . .+ Zpkγpk + Xkβk , k = 1, . . . ,K ,

where gk(·) are known monotonic link functions.

The observations yi are assumed to be independent and conditional on

a pre-specified parametric density f (yi |θi1, . . . ,θiK).

Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ,σ2).

Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ = f (times), log(σ2) = β0).

Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ = f (times), log(σ2) = f (times)).

Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ = f (times), log(σ2) = f (times)).

Distributional regression
Sketch on MCMC inference

Based on the idea of generalized additive models for location, scale

and shape (GAMLSS), which extends the exponential family regression

framework to multi-parameter modeling.

Metropolis-Hastings based on iteratively weighted least squares

proposals (IWLS):

µj = P−1
j Z′

jW(z − η−j) Pj = Z′

jWZj +
1

τ 2
j

Kj

with working weights

W = diag

(

E

(

−
∂2l

∂η2
i

))

and working observations

z = ηW−1v v =
∂l

∂η

Distributional regression
Sketch on MCMC inference

Set the number of iterations T and starting values for the parameters.

while(i < T) {

for(k in 1:K) {

for(j in 1:p) {

γ
⋆ ∼ N((µ[k]

j)[i], ((P[k]
j)−1)[i])

α = min

{

p(γ⋆|·)q(γ⋆, (γ[k]
j)[i])

p((γ[k]
j)[i]|·)q((γ[k]

j)[i],γ⋆)
, 1

}

(γ[k]
j)[i + 1] = if(accepted) γ

⋆ else (γ[k]
j)[i]; Update η

[k]

a = rk(K[k]
j)/2 + a[k]

j b = 1

2
((γ[k]

j)[i + 1])′K[k]
j (γ[k]

j)[i + 1] + b[k]
j

(τ 2[k]
j)[i + 1]|· ∼ IG(a, b)

}

}

}

Distributional regression
Backfitting with smoothing parameter selection

Adapted selection algorithm of Belitz and Lang (2008).

while(eps > ε & i < maxit) {

for(k in 1:K) {

for(j in 1:p) {

Compute W and z

Optimize τ 2[k]
j

objfun(tau2) {

γ
[k]
j = ((Z[k]

j)′WZ[k]
j + 1

tau2
K[k]
j)−1(Z[k]

j)′(z − η
[k]
-j)

f[k]j = Z[k]
j γ

[k]
j

Return IC based on f[k]j

}

Update η
[k]

}

}

Compute new eps

}

Distributional regression
Model choice

To compare models across different response distributions and

predictors we rely on quantile residuals and the DIC.

Quantile residuals are defined as

ri = Φ−1(ui)

where Φ−1 is the cumulative distribution function of the standard

normal distribution. From the cumulative distribution function of the

response distribution obtain

ui = F̂(yi)

for continuous responses. For discrete responses ui is a random draw

from the uniform distribution on the interval
[

F̂(yi − 1), F̂(yi)
]

.

Distributional regression
Model choice

Quantile residuals in the motorcycle example:

General architecture
Symbolic descriptions

Based on Wilkinson and Rogers (1973) a typical model description in R

has the form

response ∼ x1 + x2.

Using structured additive predictors we need generic descriptors for

smooth/random terms, creating the type of term/basis we want to

incorporate (model frame). The recommended R package mgcv (Wood

2006) has a pretty set up, e.g.

response ∼ x1 + x2 + s(z1) + s(z2, z3)

response ∼ x1 + x2 + s(z1, bs = "ps").

General architecture
Symbolic descriptions

In the context of distributional regression we need formula extensions

for multiple parameters. One convenient way to specify, e.g., the

parameters of a normal model is:

list(

response ∼ x1 + x2 + s(z1) + s(z2),

sigma ∼ x1 + x2 + s(z1)

)

A four parameter example:

list(

response ∼ x1 + x2 + s(z1) + s(z2),

sigma2 ∼ x1 + x2 + s(z1),

nu ∼ s(z1),

tau ∼ s(z2)

)

General architecture
Symbolic descriptions

Hierarchical structures:

list(

response ∼ x1 + x2 + s(z1) + s(id1),

id1 ∼ x3 + s(z3) + s(id2),

id2 ∼ s(z4),

sigma2 ∼ x1 + x2 + s(z1),

nu ∼ s(z1) + s(id1),

tau ∼ s(z2)

)

Categorical responses:

list(

response ∼ x1 + x2 + s(z1) + s(z2),

∼ x1 + x2 + s(z1) + s(z3)

)

General architecture
Symbolic descriptions

Hierarchical data set example:

id1 x3 id2 z4

1 1 0.56 1 -0.49

2 2 1.36 1 -0.49

3 3 -0.78 1 -0.49

4 4 0.09 1 -0.49

5 5 -0.73 1 -0.49

6 1 0.56 2 -2.94

7 2 1.36 2 -2.94

8 3 -0.78 2 -2.94

9 4 0.09 2 -2.94

10 5 -0.73 2 -2.94

General architecture
Families

Families specify the details of models.

Required details may differ from engine to engine, however, to fully

“understand” a distribution we need the following:

The density function.

The distribution function.

The quantile function.

Link function(s).

A random number generator.

First and second derivatives of the log-likelihood (expectations).

So implementing a “new” distribution means creating a new family

(object), including the minimum specifications required by the

estimating engine(s).

General architecture
Building blocks

Formula Family Data

Parser

Transformer

Setup

Engine

Results

Summaries Plotting Selection Prediction

In principle, the setup does not restrict to any specific type of engine

(Bayesian or frequentist).

R package BayesR

The package is available at

https://R-Forge.R-project.org/projects/BayesR/

In R, simply type

R> install.packages("BayesR",
+ repos = "http://R-Forge.R-project.org")

https://R-Forge.R-project.org/projects/BayesR/

R package BayesR
Available families

Work in progress . . . (+ note that not all families are available for all

implemented engines yet)

BCCG cloglog lognormal quant

beta dagum lognormal2 quant2

betazi dirichlet multinomial t

betazi gamma mvn truncgaussian

betazoi gaussian mvt truncgaussian2

binomial gaussian2 negbin weibull

bivlogit gengamma pareto zinb

bivprobit invgaussian poisson zip

Families with ending 2 represent alternative parametrizations.

R package BayesR
Available building blocks

Type Name

Parser parse.input.bayesr()

Transformer randomize(), transformJAGS(),

transformBayesX(), tranformIWLS()

Setup setupJAGS(), jags2stan()

Engine samplerBayesX(), samplerJAGS(),

samplerSTAN(), samplerIWLS()

Results resultsBayesX(), resultsJAGS(),

resultsIWLS()

R package BayesR
Input parameters

Parsing input parameters is based on mgcv infrastructures. In addition,

the parser allows to define special user defined terms.

parse.input.bayesr(formula, data = NULL,

family = gaussian.BayesR, weights = NULL,

subset = NULL, offset = NULL, na.action = na.omit,

contrasts = NULL, knots = NULL, specials = NULL,

reference = NULL, ...)

Creates the model frame, all necessary matrices, to set up a model.

R> f <- list(accel ~ s(times), sigma ~ s(times))
R> pm <- parse.input.bayesr(f, data = mcycle)
R> names(pm)

[1] "mu" "sigma"

R> names(pm$mu)

[1] "formula" "intercept" "fake.formula" "response"
[5] "pterms" "sterms" "smooth" "sx.smooth"
[9] "X" "response.vec" "hlevel"

R package BayesR
Workflow example

JAGS

R> pm <- transformJAGS(pm)
R> ms <- setupJAGS(pm)
R> so <- samplerJAGS(ms)
R> mo <- resultsJAGS(pm, so)
R> summary(mo)
R> plot(mo)

BayesX

R> f <- list(
+ accel ~ sx(times),
+ sigma ~ sx(times)
+)
R> pm <- parse.input.bayesr(f, data = mcycle)
R> pm <- transformBayesX(pm)
R> ms <- setupBayesX(pm)
R> so <- samplerBayesX(ms)
R> mo <- resultsBayesX(pm, so)
R> summary(mo)
R> plot(mo)

R package BayesR
Generic model fitting function

The “Lego” bricks are put together in the generic model fitting function

xreg(), the main arguments are

xreg(formula, family = gaussian.BayesR, data = NULL,

parse.input = parse.input.bayesr,

transform = transformJAGS,

setup = setupJAGS,

engine = samplerJAGS,

results = resultsJAGS,

cores = NULL, combine = TRUE, model = TRUE, ...)

If new engines are implemented, one only needs to exchange the

building block functions.

R package BayesR
Wrapper function

To ease the workflow, a wrapper function for the available engines is

provided:

bayesr(formula, family = gaussian, data = NULL,

knots = NULL, weights = NULL, subset = NULL,

offset = NULL, na.action = na.fail, contrasts = NULL,

engine = c("IWLS", "BayesX", "JAGS", "STAN"),

cores = NULL, combine = TRUE,

n.iter = 12000, thin = 10, burnin = 2000,

seed = NULL, ...)

The function calls xreg() and returns an object of “bayesr” for which

standard extractor and plotting functions are provided:

summary(), plot(), fitted(), residuals(), predict(), coef(),

DIC(), samples(), . . .

Example
Munich rent data

The aim is to establish a rent index to provide information on the “typical

rent for a flat”.

Variable Description

rent Net rent per month (EUR)

rentsqm Net rent per month per square meter (EUR)

area Living area in square meters

yearc Year of construction

location Quality of location: "average", "good", "top"

bath Quality of the bathroom: "standard", "premium"

kitchen Quality of the kitchen: "standard", "premium"

cheating Central heating system: "yes", "no"

district District in Munich

Example
Munich rent data

R> data("rent99", package = "BayesR")
R> rent99$rent <- rent99$rent / 1000

Example
Munich rent data

Gaussian model in BayesX

R> data("MunichBnd", package = "BayesR")
R> f <- list(
+ rent ~ bath + kitchen + location + cheating +
+ sx(area) + sx(yearc) + sx(district, bs="mrf", map=MunichBnd),
+ sigma2 ~ bath + kitchen + location + cheating +
+ sx(area) + sx(yearc) + sx(district, bs="mrf", map=MunichBnd)
+)
R> r1 <- bayesr(f, family = gaussian2,
+ data = rent99, engine = "BayesX")
R> summary(r1)

Call:
bayesr(formula = f, family = gaussian2, data = rent99,

engine = "BayesX", verbose = TRUE)

Family: gaussian2
Link function: mu = identity, sigma2 = log

...continued on next slide...

Example
Munich rent data

Results for mu:

Formula:
rent ~ bath + kitchen + location + cheating + sx(area) +

sx(yearc) + sx(district, bs = "mrf", map = MunichBnd)

Parametric coefficients:
Mean Sd 2.5% 50% 97.5%

(Intercept) 0.86907 0.02326 0.82326 0.86922 0.916
bathpremium 0.07942 0.02286 0.03408 0.08019 0.122
kitchenpremium 0.10313 0.02505 0.05732 0.10311 0.152
locationgood 0.04988 0.01052 0.02934 0.04940 0.071
locationtop 0.14065 0.04301 0.05512 0.14132 0.225
cheatingyes 0.21268 0.01491 0.18225 0.21295 0.242

Smooth effects variances:
Mean Sd 2.5% 50% 97.5%

sx(area) 0.0013374 0.0010928 0.0002956 0.0009991 0.004
sx(yearc) 0.0010686 0.0009757 0.0002476 0.0007958 0.004
sx(district) 0.0030714 0.0012751 0.0010150 0.0029200 0.006

Example
Munich rent data

Results for sigma2:

Formula:
sigma2 ~ bath + kitchen + location + cheating + sx(area) +

sx(yearc) + sx(district, bs = "mrf", map = MunichBnd)

Parametric coefficients:
Mean Sd 2.5% 50% 97.5%

(Intercept) -2.77689 0.10798 -2.99499 -2.77649 -2.565
bathpremium 0.17031 0.11550 -0.05608 0.17125 0.398
kitchenpremium 0.27878 0.13473 0.01762 0.27769 0.533
locationgood 0.27026 0.06359 0.14489 0.26974 0.397
locationtop 0.91968 0.17687 0.58473 0.91745 1.281
cheatingyes 0.12580 0.09313 -0.05675 0.12868 0.304

Smooth effects variances:
Mean Sd 2.5% 50% 97.5%

sx(area) 0.0042278 0.0056634 0.0004687 0.0023609 0.019
sx(yearc) 0.0055512 0.0067109 0.0007356 0.0033074 0.021
sx(district) 0.0387951 0.0250549 0.0074447 0.0330498 0.099

Example
Munich rent data

R> plot(r1, density = TRUE)

Example
Munich rent data

R> plot(r1, density = TRUE, scale = 0)

Example
Munich rent data

R> plot(r1, term = "sx(district)", map = MunichBnd)

Example
Munich rent data

R> plot(r1, model = "mu", term = "sx(district)",
+ map = MunichBnd, range = c(-0.05, 0.05))

Example
Munich rent data

R> plot(r1, model = "mu", term = "sx(district)",
+ map = MunichBnd, range = c(-0.05, 0.05), interp = TRUE)

Example
Munich rent data

R> plot(r1, which = 3:6)

Example
Munich rent data

Neighborhood structures 1:

R> plotneighbors(MunichBnd, type = "boundary")

Example
Munich rent data

Neighborhood structures 2:

R> plotneighbors(MunichBnd, type = "delaunay")

Example
Munich rent data

Neighborhood structures 3:

R> plotneighbors(MunichBnd, type = "knear")

Example
Munich rent data

Neighborhood structures 3:

R> plotneighbors(MunichBnd, type = "knear", k = 2)

Example
Munich rent data

Creating a neighborhood structure to be used in BayesX

R> nm <- neighbormatrix(MunichBnd, type = "knear", k = 2)

R> f <- list(
+ rent ~ bath + kitchen + location + cheating +
+ sx(area) + sx(yearc) + sx(district, bs="mrf", map=nm),
+ sigma2 ~ bath + kitchen + location + cheating +
+ sx(area) + sx(yearc) + sx(district, bs="mrf", map=nm)
+)

R> b <- bayesr(f, family = gaussian2,
+ data = rent99, engine = "BayesX")

Example
Munich rent data

Implementing the gamma distribution for BayesX.

gamma.BayesR <- function(...)

{

rval <- list(

"family" = "gamma",

"names" = c("mu", "sigma"),

"links" = c(mu = "log", sigma = "log"),

"bayesx" = list(

"mu" = c("gamma_mu", "mean"),

"sigma" = c("gamma_sigma", "shape")

),

"d" = function(y, eta, log = FALSE) {

a <- exp(eta$sigma)

s <- exp(eta$mu) / a

dgamma(y, shape = a, scale = s, log = log)

},

"p" = function(y, eta, lower.tail = TRUE, log.p = FALSE) {

a <- exp(eta$sigma)

s <- exp(eta$mu) / a

pgamma(y, shape = a, scale = s, lower.tail = lower.tail, log.p = log.p)

}

)

rval

}

Example
Munich rent data

Gamma model in BayesX

R> f <- list(
+ rent ~ bath + kitchen + location + cheating +
+ sx(area) + sx(yearc) + sx(district, bs="mrf", map=MunichBnd),
+ sigma ~ bath + kitchen + location + cheating +
+ sx(area) + sx(yearc) + sx(district, bs="mrf", map=MunichBnd)
+)
R> r2 <- bayesr(f, family = gamma,
+ data = rent99, engine = "BayesX")

Example
Munich rent data

R> plot(r2, density = TRUE)

Example
Munich rent data

R> plot(r2, density = TRUE, scale = 0)

Example
Munich rent data

R> plot(r2, term = "sx(district)", map = MunichBnd)

Example
Munich rent data

R> fsp1 <- fitted(r1, term = "sx(district)",
+ type = "parameter", samples = TRUE,
+ intercept = FALSE)
R> fsp2 <- fitted(r2, term = "sx(district)",
+ type = "parameter", samples = TRUE,
+ intercept = FALSE, FUN = function(x) { x })
R> sigma2 <- NULL
R> for(i in 1:ncol(fsp2$mu))
+ sigma2 <- cbind(sigma2, fsp2$mu[, i]^2 / fsp2$sigma[, i])
R> sigma2 <- apply(sigma2, 1, mean)

R> plotmap(MunichBnd, x = fsp1$sigma2, id = rent99$district,
+ col = heat_hcl, swap = TRUE, range = c(1, 1.17))
R> plotmap(MunichBnd, x = sigma2, id = rent99$district,
+ col = heat_hcl, swap = TRUE, range = c(1, 1.17))

Example
Munich rent data

R> DIC(r1, r2)

DIC pd
r1 -206.2633 100.4837
r2 -291.3151 132.5380

Example
Munich rent data

Implementing the gamma distribution for IWLS.

gamma.BayesR <- function(...)

{

rval <- list(

...

"score" = list(

"mu" = function(y, eta, ...) {

exp(eta$sigma) * (-1 + y / exp(eta$mu))

},

"sigma" = function(y, eta, ...) {

mu <- exp(eta$mu)

sigma <- exp(eta$sigma)

sigma * (log(sigma) + 1 - log(mu) - digamma(sigma) + log(y) - y / mu)

}

),

"weights" = list(

"mu" = function(y, eta, ...) { exp(eta$sigma) },

"sigma" = function(y, eta, ...) {

sigma <- exp(eta$sigma)

sigma^2 * trigamma(sigma) - sigma

}

),

...

)

rval

}

Example
Munich rent data

Gamma model with IWLS

R> rent99 <- cbind(rent99,
+ centroids(MunichBnd, id = rent99$district))
R> f <- list(
+ rent ~ bath + kitchen + location + cheating +
+ s(area) + s(yearc) + s(x, y, k = 100),
+ sigma ~ bath + kitchen + location + cheating +
+ s(area) + s(yearc) + s(x, y, k = 100)
+)
R> r3 <- bayesr(f, family = gamma, data = rent99,
+ engine = "IWLS", method = c("backfitting", "MCMC"))

Example
Munich rent data

R> plot(r3)

Example
Munich rent data

R> plot(r3, scale = 0)

Example
Munich rent data

R> plot(r3, model = "mu", term = "s(x,y)", image = TRUE)

Example
Munich rent data

Spatial predictions

R> grid <- 200
R> bbox <- bbox(bnd2sp(MunichBnd))
R> nd <- expand.grid(
+ "x" = seq(bbox["x", 1], bbox["x", 2], length = grid),
+ "y" = seq(bbox["y", 1], bbox["y", 2], length = grid)
+)

R> nd$fmu <- predict(r3, newdata = nd,
+ model = "mu", term = "s(x,y)",
+ type = "parameter")

R> i <- drop2poly(ndx, ndy, MunichBnd)
R> nd <- nd[i,]

R> xymap(x, y, fmu, data = nd, col = heat_hcl,
+ symmetric = FALSE, swap = TRUE,
+ range = c(0.5, 0.6))
R> plotmap(MunichBnd, add = TRUE)

Example
Munich rent data

Thank you!!!

Belitz C, Brezger A, Kneib T, Lang S (2011). BayesX – Software for Bayesian Inference in

Structured Additive Regression. Models. Version 2.0.1. URL http://www.BayesX.org/

Fahrmeir L, Kneib T, Lang S, Marx B (2013). Regression – Models, Methods and Applications.

Springer, Berlin.

Klein N, Kneib T, Lang S (2013b). Bayesian Structured Additive Distributional Regression.

Working Paper 2013-23, Working Papers in Economics and Statistics, Research Platform

Empirical and Experimental Economics, Universität Innsbruck, August 2013.

URL http://econpapers.repec.org/paper/innwpaper/2013-23.htm.

Umlauf N, Adler D, Kneib T, Lang S, Zeileis A (2012). Structured additive regression models: An R

interface to BayesX. Working Paper 2012-10, Working Papers in Economics and Statistics,

Research Platform Empirical and Experimental Economics, Universität Innsbruck, May 2012.

URL http://CRAN.R-project.org/package=R2BayesX

Rigby RA, Stasinopoulos DM (2005). Generalized Additive Models for Location, Scale and Shape

(with Discussion). Applied Statistics 54, 507–554.

Wood SN (2006). Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC,

Boca Raton.

Wood SN (2011). mgcv: GAMs with GCV/AIC/REML Smoothness Estimation and GAMMs by

PQL. R package version 1.7-6. URL http://CRAN.R-project.org/package=mgcv

http://www.BayesX.org/
http://econpapers.repec.org/paper/innwpaper/2013-23.htm
http://CRAN.R-project.org/package=R2BayesX
http://CRAN.R-project.org/package=mgcv

	BAMLSS in R
	Overview
	Intro
	Distributional regression
	Architecture
	BayesR
	Examples
	References

