
BAMLSS
Bayesian Additive Models for Location Scale and Shape
(and Beyond)

Nikolaus Umlauf

http://eeecon.uibk.ac.at/~umlauf/

http://eeecon.uibk.ac.at/~umlauf/

Overview

Introduction

Distributional regression

Lego toolbox

R package bamlss

Example

Introduction

A not complete list of software packages dealing with Bayesian
regression models:

bayesm, univariate and multivariate, SUR, multinomial logit, . . .

bayesSurv, survival regression, . . .

MCMCpack, linear regression, logit, ordinal probit, probit, Poisson
regression, . . .

MCMCglmm, generalized linear mixed models (GLMM).

spikeSlabGAM, Bayesian variable selection, model choice, in
generalized additive mixed models (GAMM), . . .

gammSlice, generalized additive mixed models (GAMM).

BayesX, structured additive distributional regression (STAR), . . .

INLA, generalized additive mixed models (GAMM), . . .

WinBUGS, JAGS, STAN, general purpose sampling engines.
...

Introduction

Most Bayesian software packages provide support for the estimation of
so called mixed models (random effects), i.e., incorporating linear
predictors of the form

η = Xβ + Uγ,

where Xβ are fixed effects, e.g., p(β) ∝ const, and Uγ are the random
effects, γ ∼ N(0,Q(τ 2)).

Few Bayesian software packages provide support for the estimation of
semiparametric regression models with structured additive predictor

η = f1(x) + . . .+ fJ(x),

where fj are possibly smooth functions and x represents a generic
vector of all nonlinear modeled covariates.

Introduction

STAR Models

The vector of function evaluations fj = (fj(x1), . . . , fj(xn)) of the
i = 1, . . . , n observations is given by

fj = fj(Xj ,βj) = Xβj ,

with Xj as the design matrix and βj are unknown regression
coefficients. Form of Xj only depends on the functional type chosen,
e.g., using B-splines:

Introduction

Basis function approach, penalized least squares:

PLS(β,λ) = ||y− η||2 + λ1β
′
1K1β1 + . . .+ λJβ

′
JKJβJ .

A general Prior for β in the corresponding Bayesian approach

p(βj) ∝

(
1
τ 2

j

)rk(Kj)/2

exp

(
− 1

2τ 2
j
β′jKjβj

)
,

τ 2
j variance parameter, governs the smoothness of fj .

Structure of Kj also depends on the type of covariates and on
assumptions about smoothness of fj .

The variance parameter τ 2
j is equivalent to the inverse smoothing

parameter in a frequentist approach.

Introduction

However, any basis function representation can be transformed into a
mixed model representation

fj = Xjβj = Xj(X̃β̃ + Ũγ̃) = Ẋβ̃ + U̇γ̃,

with fixed effects β̃ and random effects γ̃ ∼ N(0, τ 2I).

So the number of software packages that can estimate semiparametric
models is actually quite large.

The number of different models that can be fit with these engines is
even larger.

Introduction

The basic ideas are:

Design a framework that makes it (a) easy to use different
estimation engines and (b) fit models with a structured additive
predictor.

Therefore, we need to employ symbolic descriptions that do not
restrict to any specific type of model and term structure.

I.e., the aim is to use specialized/optimized engines to apply
Bayesian structured additive distributional regression a.k.a.
Bayesian additive models for location scale and shape (BAMLSS)
and beyond.

The approach should have maximum flexibility/extendability,
also concerning functional types.

Distributional regression

Within this framework any parameter of a population distribution may be
modeled by explanatory variables

y ∼ D (h1(θ1) = η1, h2(θ2) = η2, . . . , hK (θK) = ηK) ,

where D denotes any parametric distribution available for the response
variable.

Each parameter is linked to a structured additive predictor

hk (θk) = ηk = ηk (x;βk) = f1k (x;β1k) + . . .+ fJk k (x;βJk k),

j = 1, . . . , Jk and k = 1, . . . ,K and hk (·) are known monotonic link
functions.

The observations yi are assumed to be independent and conditional on
a pre-specified parametric density f (yi ; θi1, . . . , θiK).

Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ, σ2).

Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ = f (times), log(σ2) = β0).

Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ = f (times), log(σ2) = f (times)).

Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ = f (times), log(σ2) = f (times)).

A conceptional Lego toolbox
Families

Families specify the details of models.

Required details may differ from engine to engine, however, to fully
“understand” a distribution we need the following:

The density function.

The distribution function.

The quantile function.

Link function(s).

A random number generator.

First and second derivatives of the log-likelihood (expectations).

So implementing a “new” distribution means creating a new family
(object), including the minimum specifications required by the
estimating engine(s).

A conceptional Lego toolbox
Priors

For simple linear effects Xjkβjk , a common choice is p(βjk) ∝ const .

For the smooth terms, a general setup is obtained by

p(βjk) ∝

(
1
τ 2

jk

)rk(Kjk)/2

exp

(
− 1

2τ 2
jk
β>jk Kjkβjk

)
,

where Kjk is a quadratic penalty matrix that shrinks parameters towards
zero or penalizes too abrupt jumps between neighboring parameters,
e.g., for random effects Kjk = I.

Weakly informative inverse Gamma hyperprior

p(τ 2
jk) =

bajk
jk

Γ(ajk)
(τ 2

jk)−(ajk+1) exp(−bjk/τ
2
jk).

with ajk = bjk = 0.001,

A conceptional Lego toolbox
Model fitting

The main building block of regression model algorithms is the
probability density function f (y|θ1, . . . ,θK).

Estimation typically requires to evaluate

`(β; y,X) =
n∑

i=1

log f (yi ; θi1 = h−1
1 (ηi1(xi ,β1)), . . .

. . . , θiK = h−1
K (ηiK (xi ,βK))),

with β = (β>1 , . . . ,β
>
K)> and X = (X1, . . . ,XK).

The log-posterior

log p(ϑ; y,X) ∝ `(β; y,X) +
K∑

k=1

Jk∑
j=1

{log pjk (ϑjk)} ,

where, e.g., ϑjk = (β>jk , (τ
2
jk)>)>

(frequentist, penalized log-likelihood).

A conceptional Lego toolbox
Model fitting

Gradient based algorithms require the first derivative or score vector.
Within the Bayesian formulation the resulting score vector is

s(β) =
∂ log p(ϑ; y,X)

∂β
=
∂`(β; y,X)

∂β
+

K∑
k=1

Jk∑
j=1

{
∂ log pjk (βjk)

∂β

}
,

The first order partial derivatives of the log-likelihood w.r.t. β can be
further fragmented

∂`(β; y,X)

∂βk
=
∂`(β; y,X)

∂ηk

∂ηk

∂βk
=
∂`(β; y,X)

∂θk

∂θk

∂ηk

∂ηk

∂βk
,

since θik = h−1
k (ηik (xi ,βk)).

A conceptional Lego toolbox
Model fitting

Applying, e.g., Newton-Raphson requires the Hessian, entries Hks(β)

∂2`(β; y,X)

∂βk∂β
>
s

=

(
∂ηs

∂βs

)> ∂2`(β; y,X)

∂ηk∂η
>
s

∂ηk

∂βk
+
∂`(β; y,X)

∂ηk

∂2ηk

∂2βk︸ ︷︷ ︸
if k=s

,

k = 1, . . . ,K and s = 1, . . . ,K . Again, chain rule gives

∂2`(β; y,X)

∂ηk∂η
>
s

=
∂`(β; y,X)

∂θk

∂2θk

∂ηk∂η
>
s

+
∂2`(β; y,X)

∂θk∂θ
>
s

∂θk

∂ηk

∂θs

∂ηs
.

Conventional updating scheme

β(t+1) = U(β(t)) = β(t) − H
(
β(t)

)−1
s
(
β(t)

)
,

feasable, but computationally still a bit unhandy.

A conceptional Lego toolbox
Model fitting

Fortunately, partitioned updating is possible

β
(t+1)
1 = U1(β

(t)
1 ,β

(t)
2 , . . . ,β

(t)
K)

β
(t+1)
2 = U2(β

(t+1)
1 ,β

(t)
2 , . . . ,β

(t)
K)

...

β
(t+1)
K = UK (β

(t+1)
1 ,β

(t+1)
2 , . . . ,β

(t)
K),

which yields

β
(t+1)
k = Uk (β

(t)
k |·) = β

(t)
k − Hkk

(
β
(t)
k

)−1
s
(
β
(t)
k

)
.

Can be further partitioned for each function within parameter block k .

A conceptional Lego toolbox
Model fitting

Using a basis function approach, derive PM-estimates with iteratively
reweighted least squares (IWLS)

β
(t+1)
jk = (X>jk Wkk Xjk + Gjk)−1X>jk Wkk (zk − η(t)k ,−j),

with Gjk = τ−2
jk Kjk and working observations

zk = η
(t)
k + W−1

kk u(t)
k ,

where Wkk = −diag(∂2`(β; y,X)/∂ηk∂η
>
k) and

uk = ∂`(β; y,X)/∂ηk .

Depending on the type of algorithm different weights are used, e.g.,
Wkk = E

(
−∂2`(β; y,X)/∂ηk∂η

>
k

)
.

A conceptional Lego toolbox
Model fitting

MCMC simulation
Random walk Metropolis, symmetric q(β?jk |β

(t)
jk).

Derivative based MCMC, second order Taylor series expansion
centered at the last state p(β?jk |·) yields N(µ

(t)
jk ,Σ

(t)
jk) proposal

with precision matrix(
Σ

(t)
jk

)−1
= −Hkk

(
β
(t)
jk

)
and mean

µ
(t)
jk = β

(t)
jk − Hkk

(
β
(t)
jk

)−1
s
(
β
(t)
jk

)
.

Metropolis-Hastings acceptance probability

α
(
β?jk |β

(t)
jk

)
= min

{
p(β?jk |·)q(β

(t)
jk |β

?
jk)

p(β
(t)
jk |·)q(β?jk |β

(t)
jk)

, 1

}
.

A conceptional Lego toolbox
Model fitting

Again, using a basis function approach, simplified
Metropolis-Hastings based on IWLS proposals:

µ
(t)
jk = Σ

(t)
jk X>jk Wkk

{
zk − η(t)k ,−j

}
,

and precision matrix(
Σ

(t)
jk

)−1
= X>jk Wkk Xjk + Gjk ,

resulting multivariate normal proposal

β?jk ∼ N(µ
(t)
jk ,Σ

(t)
jk).

Other sampling schemes, e.g., slice sampling, NUTS, t-walk, . . . ?!

A conceptional Lego toolbox
Summary

The following “lego bricks” are repeatedly used within BAMLSS
candidate algorithms:

The density function
f (y ; θi = h−1

1 (η1(x,β1)), . . . , θK = h−1
K (ηK (x,βK))),

link functions hk (·),

the first order derivatives ∂ log p(ϑ;y,X)
∂βk

and ∂ηk
∂βk

,

the second order derivatives ∂2 log p(ϑ;y,X)
∂βk∂β

>
s

,

derivatives for log-priors ∂ log pjk (ϑjk)
∂ϑjk

.

A conceptional Lego toolbox
Algorithm

A simple generic algorithm for BAMLSS models:

while(eps > ε & t < maxit) {

for(k in 1:K) {

for(j in 1:J[k]) {

Compute η̃ = ηk − fjk.
Obtain new (β?jk, (τ

2
jk)

?)> = Ujk(Xjk, y, η̃,β[t]
jk , (τ

2
jk)

[t]).
Update ηk.

}

}

t = t + 1

Compute new eps.
}

Functions Ujk(·) could either return proposals from a MCMC sampler or
updates from an optimizing algorithm.

R package bamlss

The package is available at

https://R-Forge.R-project.org/projects/BayesR/

In R, simply type

R> install.packages("bamlss",
+ repos = "http://R-Forge.R-project.org")

https://R-Forge.R-project.org/projects/BayesR/

R package bamlss
Building blocks

formula family data

model.frame

transformer

optimizer

sampler

results

summary plot select predict

In principle, the setup does not restrict to any specific type of engine
(Bayesian or frequentist).

R package bamlss
Symbolic descriptions

Based on Wilkinson and Rogers (1973) a typical model description in R
has the form

response ∼ x1 + x2.

Using structured additive predictors we need generic descriptors for
smooth/random terms, creating the type of term/basis we want to
incorporate (model frame). The recommended R package mgcv (Wood
2006) has a pretty set up, e.g.

response ∼ x1 + x2 + s(z1) + s(z2, z3)

response ∼ x1 + x2 + s(z1, bs = "ps").

R package bamlss
Symbolic descriptions

In the context of distributional regression we need formula extensions
for multiple parameters. One convenient way to specify, e.g., the
parameters of a normal model is:

list(

response ∼ x1 + x2 + s(z1) + s(z2),

sigma ∼ x1 + x2 + s(z1)

)

A four parameter example:

list(

response ∼ x1 + x2 + s(z1) + s(z2),

sigma2 ∼ x1 + x2 + s(z1),

nu ∼ s(z1),

tau ∼ s(z2)

)

R package bamlss
Symbolic descriptions

Hierarchical structures:

list(

response ∼ x1 + x2 + s(z1) + s(id1),

id1 ∼ x3 + s(z3) + s(id2),

id2 ∼ s(z4),

sigma2 ∼ x1 + x2 + s(z1),

nu ∼ s(z1) + s(id1),

tau ∼ s(z2)

)

Categorical responses:

list(

response ∼ x1 + x2 + s(z1) + s(z2),

∼ x1 + x2 + s(z1) + s(z3)

)

R package bamlss
The model frame

Parsing the necessary model frame is based on mgcv infrastructures.
In addition, the parser allows to define special user defined terms.

bamlss.frame(formula, data = NULL, family = "gaussian",

weights = NULL, subset = NULL, offset = NULL,

na.action = na.omit, contrasts = NULL, ...)

Creates the model frame, i.e., all necessary matrices to set up a model.

R> f <- list(accel ~ s(times), sigma ~ s(times))
R> bf <- bamlss.frame(f, data = mcycle, family = "gaussian")

R package bamlss

R> print(bf)

'bamlss.frame' structure:
..$ call
..$ model.frame
..$ formula
..$ family
..$ terms
..$ x
.. ..$ mu
..$ formula
..$ fake.formula
..$ terms
..$ model.matrix
..$ smooth.construct
.. ..$ sigma
..$ formula
..$ fake.formula
..$ terms
..$ model.matrix
..$ smooth.construct
..$ y
.. ..$ accel

R package bamlss
Workflow example

JAGS
R> bf$samples <- with(bf, JAGS(x, y, family))
R> summary.bamlss(bf)
R> plot.bamlss(bf)

BayesX
R> f <- list(
+ accel ~ sx(times),
+ sigma ~ sx(times)
+)
R> bf <- bamlss.frame(f, data = mcycle, family = "gaussian")
R> bf$samples <- with(bf, BayesX(x, y, family))
R> summary.bamlss(bf)
R> plot.bamlss(bf)

(Note: currently not working.)

R package bamlss
Available building blocks

Type Function

Parser bamlss.frame()

Transformer bamlss.engine.setup(), randomize()

Optimizer bfit(), opt(), cox.mode()

Sampler GMCMC(), JAGS(), STAN(), BayesX(), cox.mcmc()

Results results.bamlss.default()

If new engines are implemented, one only needs to exchange the
building block functions.

R package bamlss
Available families

Work in progress . . . (+ note that not all families are available for all
implemented engines yet)

BCCG cens cloglog cox

beta dagum lognormal quant

betazi dirichlet multinomial t

betazi gamma mvn truncgaussian

betazoi gaussian mvt truncgaussian2

binomial gaussian2 negbin weibull

bivlogit gengamma pareto zinb

bivprobit invgaussian poisson zip

Families with ending 2 represent alternative parametrizations.

R package bamlss
Family constructor

Basic setup of bamlss families, e.g., for N(µ, σ2):

list(

family, names, links,

d(y, par),

p(y, par),

q(y, par),

r(y, par),

score = list(

mu(y, par),

sigma(y, par)

),

hess = list(

mu(y, par),

sigma(y, par)

)

)

Extendable, e.g., specify the engines to be used, too.

R package bamlss
Wrapper function

To ease the workflow, a wrapper function for the available engines is
provided:

bamlss(formula, family = "gaussian",

data = NULL, start = NULL, transform = NULL,

optimizer = NULL, sampler = NULL, results = NULL,

cores = NULL, combine = TRUE, ...)

Standard extractor and plotting functions are provided:

summary(), plot(), fitted(), residuals(), predict(), coef(),
logLik(), DIC(), samples(), . . .

Example

Cox-regression for fire emergengy response times

The London Fire Brigade is one of the largest in the world. Collects
huge amounts of data, e.g., incidents records from dwelling fire:

http://data.london.gov.uk/dataset/

london-fire-brigade-incident-records

Reponse times of emergency calls, how can these be improved?

Example taken from:
Taylor BM, Rowlingson B (2015). spatsurv: An R Package for Bayesian Inference with Spatial
Survival Models. (to appear)
URL: http://www.lancaster.ac.uk/staff/taylorb1/preprints/spatsurv.pdf

http://data.london.gov.uk/dataset/london-fire-brigade-incident-records
http://data.london.gov.uk/dataset/london-fire-brigade-incident-records
http://www.lancaster.ac.uk/staff/taylorb1/preprints/spatsurv.pdf

Example

Data set of the first two quarters of 2015 emergency calls from dwelling
fire, available in bamlss:

R> data("LondonFire", package = "bamlss")
R> nrow(LondonFire)

[1] 5838

Consists of the "SpatialPointsDataFrame" named LondonFire

and the actual 2015 fire station locations LondonFStations, as well as
the "SpatialPolygons" LondonBoroughs and LondonBoundaries.

R> plot(LondonFire, col = "red")
R> plot(LondonFStations, col = "blue", add = TRUE)
R> plot(LondonBoroughs, add = TRUE)

Example

Example

Cox-model

We are interested in the drivers of the time it takes until the first fire
engine arrives after the emergengy call.

The hazard of an event (fire engine arrives) at time t can be described
with a relative additive risk model of the form:

λ(t) = exp (η(t)) = exp (ηλ(t) + ηγ) ,

i.e., a model for the instantaneous arrival rate conditional on the engine
having not arrived before time t .

The probability that the engine will arrive on the scene after time t is

S(t) = Prob(T > t) = exp
(
−
∫ t

0
λ(u)du

)
.

Example

For NR and MCMC we need the log-likelihood of the continuous time
Cox-model

`(β; y,X) =
n∑

i=1

(
δiηi,γ −

∫ ti

0
exp(ηi,λ(u)du)

)
Assuming a basis function approach, the score vector for the
time-dependent part is

s (βλ) = δ>Xλ(t)−
n∑

i=1

exp(ηi,γ)

(∫ ti

0
exp(ηi,λ(u))xi(u)du

)
.

The elements of the Hessian w.r.t. βλ are

H (βλ) = −
n∑

i=1

exp (ηi,γ)

∫ ti

0
exp(ηi,λ(u))x i,λ(u)x>i,λ(u)du.

Example

The integrals need to be computed numerically, e.g., using the
trapezoidal rule we “only” need to set up a time grid, lets say with 100
equidistant points within [0, ti]

G =

g>1
...

g>n

 , with gi = (0, . . . , ti)>,

to construct the evaluated λ(t) matrix with

η̂λ(G) =

∑Jλ

j=1 fj(x1j(g10)) . . .
∑Jλ

j=1 fj(x1j(g1ti))
...

. . .
...∑Jλ

j=1 fj(xnj(gn0)) . . .
∑Jλ

j=1 fj(xnj(gnti))

.

Example

Fortunately, the time-constant part is a bit easier. Results in IWLS
backfitting/proposal scheme with

z = ηγ + W−1u

with diagonal matrix
W = diag(exp(ηγ) · I)

and
u = δ − exp(ηγ) · I.

Here, diagonal matrix I represents the integrals for all individuals.

Optimizer and sampler implemented in function cox.mode() and
cox.mcmc().

Example

For the emergency call model, we use the following additive predictors

ηλ = f1(arrivaltime) + f2(arrivaltime, lon, lat)

and

ηγ = β0 + f1(fsintens) + f2(daytime) +

f3(lon, lat) + f4(daytime, lon, lat).

In R we set up the model by

R> f <- list(
+ Surv(arrivaltime) ~ ti(arrivaltime) + ti(arrivaltime,lon,lat),
+ gamma ~ s(fsintens) + ti(daytime,bs="cc") + ti(lon,lat) +
+ ti(daytime,lon,lat,bs=c("cc","cr"),d=c(1,2))
+)

R> firemodel <- bamlss(f, data = LondonFire, family = "cox",
+ subdivisions = 100, n.iter = 12000, burnin = 2000,
+ thin = 10, cores = 8, maxit = 1000)

Example

R> summary(firemodel)

Call:
bamlss(formula = f, family = "cox", data = LondonFire, cores = 7,

subdivisions = 100, nu = 0.01, n.iter = 4000, burnin = 2000,
thin = 10, maxit = 3000)

Family: cox
Link function: lambda = log, gamma = identity
*---
Formula lambda:

Surv(arrivaltime) ~ ti(arrivaltime) + ti(arrivaltime, lon, lat)
-
Smooth terms:

Mean 2.5% 50% 97.5%
ti(arrivaltime).tau21 2.904e-01 7.555e-02 2.414e-01 7.795e-01
ti(arrivaltime).edf 1.097e+01 8.684e+00 1.088e+01 1.360e+01
ti(arrivaltime).alpha 3.722e-01 4.032e-05 2.124e-01 1.000e+00
ti(arrivaltime,lon,lat).tau21 3.143e-07 2.810e-07 3.134e-07 3.500e-07
ti(arrivaltime,lon,lat).edf 3.500e+01 3.500e+01 3.500e+01 3.500e+01
ti(arrivaltime,lon,lat).alpha 1.134e-01 5.330e-33 4.015e-03 1.000e+00

Example

parameters
ti(arrivaltime).tau21 0.132
ti(arrivaltime).edf 9.926
ti(arrivaltime).alpha NA
ti(arrivaltime,lon,lat).tau21 5.350
ti(arrivaltime,lon,lat).edf 57.097
ti(arrivaltime,lon,lat).alpha NA

Formula gamma:

gamma ~ s(fsintens) + ti(daytime, bs = "cc") + ti(lon, lat) +
ti(daytime, lon, lat, bs = c("cc", "cr"), d = c(1, 2))

-
Parametric coefficients:

Mean 2.5% 50% 97.5% parameters
(Intercept) -0.9425 -0.9768 -0.9427 -0.9088 -0.926
-

Example

Smooth terms:

... not shown ...

Sampler summary:
-
DIC = 13365.95 logLik = -6628.066 logPost = 3307.896
pd = 109.8167

Optimizer summary:
-
edf = 170.6112 logLik = -6533.596 logPost = -8017.541

Example

R> plot(firemodel, which = "samples")

Example

R> plot(firemodel, model = "lambda", term = "s(arrivaltime)")

R> predict(firemodel, newdata = nd,
+ model = "lambda", term = "s(lon,lat,arrivaltime)")

Example

Thank you!!!

Klein N, Kneib T, Klasen S, Lang S (2014). Bayesian Structured Additive Distributional Regression
for Multivariate Responses. Journal of the Royal Statistical Society: Series C (Applied Statistics),
pp. URL http://dx.doi.org/10.1111/rssc.12090

Lang S, Umlauf N, Wechselberger P, Harttgen K, Kneib T (2013): Multilevel structured additive
regression. Statistics and Computing, 24(2), 223–238.

Umlauf N, Adler D, Kneib T, Lang S, Zeileis A (2015). Structured additive regression models: An R
interface to BayesX. Journal of Statistical Software, 63(21):1–46, 2015.
URL http://CRAN.R-project.org/package=R2BayesX

Rigby RA, Stasinopoulos DM (2005). Generalized Additive Models for Location, Scale and Shape
(with Discussion). Applied Statistics 54, 507–554.

Wood SN (2006). Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC,
Boca Raton.

Wood SN (2011). mgcv: GAMs with GCV/AIC/REML Smoothness Estimation and GAMMs by
PQL. R package version 1.7-6. URL http://CRAN.R-project.org/package=mgcv

http://dx.doi.org/10.1111/rssc.12090
http://CRAN.R-project.org/package=R2BayesX
http://CRAN.R-project.org/package=mgcv

	BAMLSS in R
	Overview
	Intro
	Distributional regression
	bamlss
	References

