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Overview Overview
Time series data: typical in macroeconomics and finance Background reading:

@ Brockwell and Davis (2002): Introduction to Time Series and

Notation: y;, t=1,...,n. . -
% Forecasting, 2nd edition.

Contents: @ Brockwell and Davis (1991): Time Series — Theory and Methods,
: 2nd edition.
Infrastructure and “naive” methods ] _ ) '
. @ Franses (1998): Time Series Models for Business and Economic
ARMA modeling .
Forecasting

@ Hamilton (1994): Time Series Analysis

Time series regression and structural change

°
°
@ Stationarity, unit roots, and cointegration
°

o ...
°

Extensions (GARCH, structural time series models)

Focus is on time domain methodology.
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Classes for time series data

Standard time series class in R is “ts”:

@ Aimed at regular series (annual, quarterly, monthly).

@ A “ts” object is either a numeric vector (univariate series) or a
numeric matrix (multivariate series).
@ "tsp" attribute reflects time series properties:

Infrastructure and “Naive” a vector of length 3 with start, end and frequency.

@ Create via ts(): supply data (numeric vector or matrix) plus
Methods pply data ( )P
arguments start, end, and frequency.

@ Methods for standard generic functions: plot (), lines(),
str(), summary (), ...

@ Additional time-series-specific methods: 1ag(), diff (), ....
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Classes for time series data Classes for time series data
Example: Quarterly consumption of non-durables in the United o
Kingdom (from Franses 1998) 8
[Ce]
Plot: o
R> data("UKNonDurables") ? 8
R> plot (UKNonDurables) k=) 3
S
Time series properties: % §
S _|
R> tsp(UKNonDurables) % S
[1] 1955 1989 4 °
8 |
&
Subsets via window ():

R> window (UKNonDurables, end = c(1956, 4)) T T T T T T T

Qtri Qtr2 Qtr3 Qtrd 1955 1960 1965 1970 1975 1980 1985 1990

1955 24030 25620 26209 27167
1956 24620 25972 26285 27659

Time
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Classes for time series data (Linear) filtering

Drawbacks of “ts”: Linear filter: important class are finite moving averages
@ Only numeric time stamps (more general date/time classes?) s
@ Missing values cannot be omitted (start/end/frequency no longer Vi = Z aytj, t=r+1,...,n—s.
sufficient for reconstructing all time stamps!) — a problem with j=—r

irregular series, e.g., with many financial time series. ) ) )
If r = s, filter is called symmetric.

R packages for irregular series: several, we use zoo

@ Generalization of “ts”: time stamps of arbitrary type. In R: function filter ()
@ Numeric vectors or matrices, "index" attribute contains vector of @ Main argument filter takes vector containing ajs.
time stamps (not just "tsp" attribute!). @ Can also apply recursive linear filters.
@ Regular series can be coerced back and forth between “ts” and
“zoo” viaas.zoo() andas.ts(). Example: (UKDriverDeaths, Harvey and Durbin, JARSS A 1986)
@ “zo0” more convenient for daily data (e.g., “Date” time stamps) or R> data("UKDriverDeaths")
intr. d .g., “POSIXct” or “chron” time stamps). R> plot (UKDriverDeaths)
t aday éta (e g ) ¢ C ron P ) R> lines(filter (UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12),
@ More details: Zeileis and Grothendieck (JSS 2005). + col = 2)
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(Linear) filtering (Linear) filtering
Further examples:
3
Q rollapply () computes functions on moving data windows:
R> plot(rollapply(UKDriverDeaths, 12, sd))
£ o
()
-g filter () also provides autoregressive (recursive) filtering.
N4
> § | Generate 100 observations from AR(1) process:
- R> set.seed(1234)
R> x <- filter(rnorm(100), 0.9, method = "recursive")
3
S T T T 1
1970 1975 1980 1985
Time
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(Linear) filtering Decomposition

Can use filters for additive or multiplicative decomposition into
seasonal, trend, and irregular components.

350
|

In R:

300
|

@ decompose () takes simple symmetric filter for extracting trend,
derives seasonal component by averaging trend-adjusted
observations from corresponding periods.

@ stl1() iteratively finds seasonal and trend components by loess
smoothing in moving data windows.

200
|

rollapply(UKDriverDeaths, 12, sd)
250
!

150
|

Examples:

1970 1975 1980 1985 R> dd_dec <- decompose(log(UKDriverDeaths))
R> dd_stl <- stl(log(UKDriverDeaths), s.window = 13)

Time R> plot(dd_dec$trend, ylab = "trend")
R> lines(dd_stl$time.series[,"trend"], 1ty = 2, 1lwd = 2)
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Decomposition Decomposition

Decomposition of additive time series
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Decomposition Exponential smoothing

HoltWinters () handles exponential smoothing and generalizations:

©
™ @ Recursively reweighted lagged observations for predictions.
0| @ Smoothing parameters determined by minimizing squared
™ prediction error on observed data.
R p @ Default: Holt-Winters filter with additive seasonal component.
§ [ \
o Example: UKDriverDeaths
N~
@ Historical sample up to 1982(12) (before change in legislation).
/
N @ Use Holt-Winters to predict observations for 1983 and 1984.
R> dd_past <- window(UKDriverDeaths, end = c(1982, 12))
' ' ' ' R> dd_hw <- HoltWinters(dd_past)
1970 1975 1980 1985 R> dd_pred <- predict(dd_hw, n.ahead = 24)
Time R> plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths))
R> lines(UKDriverDeaths)
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Exponential smoothing

Holt-Winters filtering

2500
|

Classical Model-Based Analysis

Observed / Fitted
1500 2000
|
—— -
—

1000

1970 1975 1980 1985

Time
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Classical model-based analysis

ARIMA(p, d, ) model is

¢(L)(1 = L)y = O(L)er,
with
@ (L) =1—¢1L— ... — ¢pplP, and
@ O(L) =1+4+01L+ ...+ 64L9 (note sign convention!),
@ £ ~ WN(0,02).

Generalization for seasonal data: multiplicative seasonal ARIMA
S(L)H(L)(1 = L2)°(1 = L)%y = O(L)O(L%)ey

Notation: SARIMA(p, d, q)(P, D, Q)s

Classical model-based analysis

Time series fitting functions in R:
@ ar () (from stats) fits AR models
@ univariate via Yule-Walker, OLS, ML, or Burg, and
e multivariate (unrestricted VARSs) by Yule-Walker, OLS, or Burg.
Order selection by AIC possible.

@ arima() (from stats) fits univariate ARIMA models, including
SARIMA models, ARIMAX, and subset ARIMA models.
Methods: unconditional ML or CSS.

@ arma() (from tseries) fits ARMA models by CSS.

Starting values via Hannan-Rissanen.
Note: Parameterization of intercept different from arima ().

@ auto.arima() (from forecast): Order selection via AIC, BIC, or
AICC within user-defined set of models, fitting via arima ().

@ StructTS() (from stats) fits structural time series models:
local level, local trend, and basic structural model.
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Classical model-based analysis

Box-Jenkins approach: use ACF and PACF for preliminary analysis.
In R: acf () and pacf ().

Example: simulated AR(1)

R> set.seed(1234)

R> x <- filter(rnorm(100), 0.9, method = "recursive")
R> acf(x)

R> pacf (x)

Fit autoregression to x via ar () :

R> ar(x)

Call:
ar(x = x)

Coefficients:
1
0.928

Order selected 1 sigma”2 estimated as 1.29
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Classical model-based analysis

Series x Series x
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Classical model-based analysis

Example: UKNonDurables
R> nd <- window(log(UKNonDurables), end = c(1970, 4))

Empirical ACFs and PACFs for

@ nonseasonal differences
@ seasonal and nonseasonal differences

R> acf(diff(nd), ylim = c(-1, 1))
R> pacf(diff(nd), ylim = c(-1, 1))
R> acf(diff(diff(nd, 4)), ylim = c(-1, 1))
R> pacf(diff(diff(nd, 4)), ylim = c(-1, 1))

Classical model-based analysis

Series diff(nd) Series diff(nd)
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Classical model-based analysis

Preliminary analysis suggests
@ double differencing (d =1, D = 1),
@ some AR and MA effects —weuse p=0,1,2and g =0,1, 2,

@ low-order seasonal AR and MA parts —we use P = 0,1 and
Q=0,1.

This gives 36 parameter combinations in total. Manual solution:

@ Set up all parameter combinations via expand.grid ().
@ Fit each SARIMA model using arima () in for () loop.

@ Store resulting BIC extracted from the model.
For BIC, use AIC() withk = log(length(nd)).
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Classical model-based analysis

R> nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2,

+ sar = 0:1, sdiff = 1, sma = 0:1)

R> nd_aic <- rep(0, nrow(nd_pars))

R> for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd,
+ unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:61)),

+ k = log(length(nd)))

R> nd_pars[which.min(nd_aic),]

ar diff ma sar sdiff sma
22 0 1 1 0 1 1

Result is SARIMA(0, 1, 1)(0, 1, 1)4 — the airline model.

Refit to nd via

R> nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1))
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Classical model-based analysis Classical model-based analysis

Standardized Residuals
R> nd_arima

Call: o: | I|I'I L Illll'll |.' I|I| II||II ||| I|"I|II.
arima(x = nd, order = c(0, 1, 1), seasonal = c(0, 1, 1)) S - . . :
1955 1960 1965 1970
Coefficients: Time
mal smal
< e _8?22 _gfgg ACF of Residuals
sigma”2 estimated as 9.65e-05: 1log likelihood = 188.1, aic = -370.3 § ° § U -
S 4 1 i :
T T T T T T
Diagnostic plots: 0 1 2 3 4
R> tsdiag(nd_arima) Lag
Forecast remaining 18 years: p values for Ljung—Box statistic
R> nd_pred <- predict(nd_arima, n.ahead = 18 * 4)
$s83. ° - Coe st
Graphical comparison with observed series: e

R> plot(log(UKNonDurables)) 2 4 6 8 10
R> lines(nd_pred$pred, col = 2)

lag
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Classical model-based analysis Classical model-based analysis
5 Useful convenience functions for exploring ARMA models (all in stats):
27 @ acf2AR() — computes AR process exactly fitting given
© autocorrelation function.
8 3 @ arima.sim() — simulation of ARIMA models.
s o | @ ARMAact () — theoretical (P)ACF for a given ARMA model.
s - @ ARMAtoMA () — MA(co) representation for a given ARMA model.
X
<
o
S -

I I I I I I I
1955 1960 1965 1970 1975 1980 1985 1990

Time
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Stationarity, unit roots, and cointegration

Many time series in macroeconomics and finance are nonstationary.
Need tests for

@ unit roots,
@ stationarity,

Stationarity, Unit ROOtS, and @ cointegration.
COi nteg ration We use same data set for all these topics.

Example: from Franses 1998

Bivariate time series of average monthly European spot prices for black
and white pepper (in US dollars per ton).

R> data("PepperPrice")

R> plot(PepperPrice, plot.type = "single", col = 1:2)
R> legend("topleft", c("black", "white"), bty = "n",
+ col = 1:2, 1ty = rep(1,2))
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Stationarity, unit roots, and cointegration Unit-root tests
§ _ Available tests:
D \?Jﬁﬁle( @ Augmented Dickey-Fuller (ADF) test: ttestof Hy : 0 = 0in
k
8
- Ayt = o+ 0t + oyt—1 +Z¢/A%—j+€t~
g j=1
‘é In R: adf.test () from tseries.
o
- e Phillips-Perron (PP) test:
Same idea as ADF, but nonparametric (HAC) correction for
] autocorrelation.
8 _ In R: pp.test () from tseries.
- . . . . . e Elliott-Rothenberg-Stock (ERS):
1975 1980 1985 1990 1995 Same idea as ADF, but GLS detrending.

Time In R: ur.ers() from urca.
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Unit-root tests

ADF in levels:

R> library("tseries")
R> adf.test(log(PepperPrice[, "white"]))

Augmented Dickey-Fuller Test

data: log(PepperPrice[, "white"])
Dickey-Fuller = -1.7, Lag order =
alternative hypothesis: stationary

6, p-value = 0.7

ADF in first differences:
R> adf.test(diff (log(PepperPrice[, "white"])))
Augmented Dickey-Fuller Test

data: diff(log(PepperPricel[, "white"]))
Dickey-Fuller = -5.3, Lag order = 6, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff (log(PepperPrice[, "white"])))
p-value smaller than printed p-value

Unit-root tests

PP in levels (by default with time trend):

R> pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)")

Phillips-Perron Unit Root Test

data: log(PepperPrice[, "white"])
Dickey-Fuller Z(t_alpha) = -1.6, Truncation lag
parameter = 5, p-value = 0.7

alternative hypothesis: stationary

Christian Kleiber, Achim Zeileis © 2008-2017 Applied Econometrics with R — 6 — Time Series — 36 /67

Stationarity tests

Kwiatkowski, Phillips, Schmidt and Shin (J. Econometrics 1992):

Test Hp : rr=0in

Yo =adi+n+ e,

where
@ d; deterministic trend,
@ r; random walk,
@ ¢ stationary (/(0)) error process.

Two variants:
@ d; = «, level stationarity (under Hp).
("] Cﬁ

a + [t, trend stationarity (under Hp).
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Stationarity tests

KPSS without time trend:
R> kpss.test(log(PepperPrice[, "white"]))
KPSS Test for Level Statiomnarity

data: log(PepperPrice[, "white"])
KPSS Level = 0.91, Truncation lag parameter = 3, p-value
= 0.01

Warning message:
p-value smaller than printed p-value in:
kpss.test(log(PepperPrice[, "white"]))
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Cointegration Cointegration

Pepper series exhibit common nonstationary features. Engle-Granger two-step with black pepper regressed on white pepper:

R> po.test(log(PepperPrice))

Cointegration tests in R: . o ) )
Phillips-QOuliaris Cointegration Test

@ Engle-Granger two-step method

. . . . data: log(P Pri
Available in po.test () from tseries (named after Phillips and ata: log(PepperPrice)

Phillips-Ouliaris demeaned = -24, Truncation lag
Ouliaris, Econometrica 1990). parameter = 2, p-value = 0.02
@ Johansen test Suggests both series are cointegrated.
Full-information maximum likelihood approach in pth-order
cointegrated VAR. Error correction form (ECM) is (without Remarks:

deterministic components . L
P ) @ Test with reverse regression is

p—1 po.test(log(PepperPricel[,2:1]))
Ay =Ty + Z [jAy—j + et @ Problem: treatment asymmetric, but concept cointegration
j=1 demands symmetric treatment!

Trace and lambda-max tests available in ca. jo () from urca.
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Cointegration Cointegration
Johansen test with constant term Values of teststatistic and critical values of test:

R> library("urca")

R> pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const",

+ type = "trace") T
R> summary (pepper_jo) r

test 10pct 5pct 1pct
<=1 | 3.66 7.52 9.24 12.97
=0 | 17.26 17.85 19.96 24.60

HH#H B R AR Eigenvectors, normalised to first column:
# Johansen-Procedure # (These are the cointegration relations)
SRE MRS REERER
black.12 white.l2 constant

Test type: trace statistic , without linear trend and black.12  1.0000 1.000 1.000
constant in cointegration white.12 -0.8892 -5.099 2.281

constant -0.5570 33.027 -20.032
Eigenvalues (lambda):
[1] 4.932e-02 1.351e-02 2.082e-17 Weights W:

(This is the loading matrix)

black.1l2 white.12 constant
black.d -0.07472 0.002453 -4.958e-18
white.d 0.02016 0.003537 8.850e-18
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Time Series Regression and
Structural Change

More on fitting dynamic regression models

Example: SARIMA(1,0,0)(1,0,0)1, for UKDriverDeaths

Yi=0B1+ Boyi—1+ Bayi—12+e1, t=13,...,192.

Two approaches:

Approach 1: set up regressors “by hand” and call 1m()

R> dd <- log(UKDriverDeaths)

R> dd_dat <- ts.intersect(dd, ddl = lag(dd, k = -1),
+ dd12 = lag(dd, k = -12))

R> 1Im(dd ~ ddi1 + ddi2, data = dd_dat)

Call:
Im(formula = dd ~ ddl + dd12, data = dd_dat)
Coefficients:
(Intercept) dd1 ddi12
0.421 0.431 0.511
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More on fitting dynamic regression models

Approach 2: use convenience interface dynlm() from dynim

R> library("dynlm")
R> dynlm(dd ~ L(dd) + L(dd, 12))

Time series regression with "ts" data:

Start = 1970(1), End = 1984(12)

Call:

dynlm(formula = dd ~ L(dd) + L(dd, 12))

Coefficients:

(Intercept) L(dd) L(dd, 12)
0.421 0.431 0.511
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Structural change tests

Features of UKDriverDeaths:

@ Decrease in mean number of casualties after policy change.

@ Parameters of time series model unlikely to be stable throughout
sample period.

Package strucchange implements large collection of tests for structural
change (parameter instability).
Two types of tests:

@ Fluctuation tests.
@ Tests based on F statistics.
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Structural change tests

Fluctuation tests:

@ Assess structural stability by capturing fluctuation in CUSUMs or
MOSUMs of

e residuals (OLS or recursive),
e model scores (empirical estimating functions), or
e parameter estimates (recursive or rolling).

@ Idea: under null hypothesis of parameter stability, resulting
“fluctuation processes” exhibit limited fluctuation, under alternative
of structural change, fluctuation is generally increased.

@ Evidence for structural change if empirical fluctuation process
crosses boundary that corresponding limiting process crosses only
with probability c.

Structural change tests

Fluctuation tests in strucchange:

@ empirical fluctuation processes via efp ().
@ Result is object of class “efp”.
@ plot () method for performing test graphically.

@ sctest () method (for structural change test) for traditional
significance test.

Example: OLS-CUSUM for UKDriverDeaths
OLS-CUSUM process: Scaled CUSUM of OLS residuals &; = y; — X,TB

Lns]

1

efp(s) = &\/ﬁzét’ 0<s<H.
t=1
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Structural change tests

In R:

R> library("strucchange")
R> dd_ocus <- efp(dd ~ ddil + dd12, data = dd_dat,
+ type = "OLS-CUSUM")

Test using maximum absolute deviation of efp (default functional)
R> sctest(dd_ocus)

OLS-based CUSUM test

data: dd_ocus
SO0 = 1.5, p-value = 0.02

R> plot(dd_ocus)
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Structural change tests

OLS-based CUSUM test
//\//\/ AW\

1970 1975 1980 1985
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Time
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Structural change tests Structural change tests

Tests based on F statistics: In R: function Fstats (), with interface similar to efp ()

@ Designed Fo have good power for single-shift alternatives (of supF test with 10% trimming via
unknown timing).

@ Basic idea is to compute an F statistic (or Chow statistic) for each
conceivable breakpoint in given interval (trimming parameter).

R> dd_fs <- Fstats(dd ~ ddl + dd12, data = dd_dat, from = 0.1)
R> sctest(dd_fs)

@ Reject the null hypothesis of structural stability if SupF’ test
e any of these statistics (sup F test) data: dd_fs
e some other functional (Andrews-Ploberger, Econometrica 1994: sup.F = 19, p-value = 0.007
mean-F , exp-F)
exceeds critical value. Visualization:

R> plot(dd_fs, main = "supF test")
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Structural change tests Structural change tests
SupF test Further Example: German M1 money demand
] @ Litkepohl, Terasvirta and Wolters (JAE 1999) use error correction
model (ECM) for German M1.
0 | A @ GermanM1 contains data from 1961(1) to 1995(4) on per capita
M1, price index, per capita GNP (all in logs) and an interest rate.
(%]
3 o _
g - Load and set up model
. R> data("GermanMi")
o - R> LTW <- dm ~ dy2 + dR + dR1 + dp + ml + yl + Rl + season
Recursive estimates (RE) test (Ploberger, Kramer and Kontrus, J.
° Econometrics 1989)

I I I I I I
1972 1974 1976 1978 1980 1982 R> ml_re <- efp(LTW, data = GermanMl, type = "RE")

R> plot(ml_re)
Time
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Structural change tests Dating structural changes

RE test (recursive estimates test) Setup is linear regression model
o T (i :
N yt:xtﬁ(f)+5,, t=n_4+1,....m, j=1,...,m+1,
9 where
g o . .
S @ j=1,...,msegment index,
o .
5 ° 6(/) segment-specific set of regression coefficients,
S S @ {ny,...,ny} setof unknown breakpoints (convention: ny = 0 and
[S]
T
L .
g S In R: function breakpoints ()
o . . . .
@ Uses dynamic programming algorithm based on Bellman principle.
2 @ Finds those m breakpoints that minimize RSS of model with m + 1
! ' ' ! ! ! ! segments.
1965 1970 1975 1980 1985 1990 1995 ) , . .
@ Bandwidth parameter h determines minimal segment size of h- n
Time observations.
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Dating structural changes Dating structural changes
Example: UKDriverDeaths
o o
o Lo~
Breakpoints for SARIMA model with minimal segment size of 10% N -
|
R> dd_bp <- breakpoints(dd ~ ddl + dd12, data = dd_dat, h = 0.1) 5 /0 - S
R> coef(dd_bp, breaks = 2) % T
° L w
(Intercept)  ddi  ddi2 o / -
1970(1) - 1973(10) 1.458 0.1173 0.6945 9 - . . <
1973(11) - 1983(1) 1.534 0.2182 0.5723 ! / -
1983(2) - 1984(12) 1.687 0.5486 0.2142 ° \
& - ° @
. -, 2
Visualization o o .
8_0/0/0 \O\o o_:li
R> plot(dd_bp, legend = FALSE, main = "") ! I I I I I
R> plot(dd) 0 2 4 6 8
R> lines(fitted(dd_bp, breaks = 2), col = 4) _
R> lines(confint(dd_bp, breaks = 2)) Number of breakpoints
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Dating structural changes
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Extensions

Further packages for time series analysis

dse — Multivariate time series modeling with state-space and
vector ARMA (VARMA) models.

FinTS — R companion to Tsay (2005).

forecast — Univariate time series forecasting, including
exponential smoothing, state space, and ARIMA models.
fracdiff — ML estimation of ARFIMA models and semiparametric
estimation of the fractional differencing parameter.

longmemo — Convenience functions for long-memory models.
mFilter — Time series filters, including Baxter-King, Butterworth,
and Hodrick-Prescott.

Rmetrics — Some 20 packages for financial engineering and
computational finance, including GARCH modeling in fGarch.
tsDyn — Nonlinear time series models: STAR, ESTAR, LSTAR.
vars — (Structural) vector autoregressive (VAR) models
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Structural time series models

Basic structural model has measurement equation

Ye =t +y+en, e ~N(0,02)lid.

Seasonal component ~; (with frequency s) is

s—1

Tt+1 = — Z’Yt+1—j +wt, we ~ N(0, Ui) i.i.d.
j=1

Local level and trend components are

pipr = e+ &, & ~N(0,08)iid,
M1 = M+C G~ N(0,08) iid.
All error terms mutually independent.

In R:
R> dd_struct <- StructTS(log(UKDriverDeaths))

R> plot(cbind(fitted(dd_struct), residuals(dd_struct)))
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Structural time series models GARCH models

chind(fitted(dd_struct), residuals(dd_struct))

: 7] o
N ~
g7 °
= o c — —
S s =]
s 9 o
g, o
g ] %
5 o
gz “
= |
'DI 1
B ~
= )
S | | | | |
g o 0 500 1000 1500 2000
ﬁ :: Time
Time
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GARCH models GARCH models
tseries function garch () fits GARCH(p, q) with Gaussian innovations. Coefficient(s):
. . Estimate Std. Error t value Pr(>|t])
Default is GARCH(1 ’ 1)' a0 0.0109 0.0013 8.38 <2e-16
. al 0.1546 0.0139 11.14 <2e-16
yi = owy, vr~N(0,1)iid, bl 0.8044 0.0160  50.13 <2e-16
2 2 2
of = wtayi,+poiy, w>0,a>0732>0.

Diagnostic Tests:
Jarque Bera Test

Example: DEM/GBP FX returns for 1984-01-03 through 1991-12-31

R> mp <- garch(MarkPound, grad = "numerical", trace = FALSE) data: Residuals
R> summary (mp) X-squared = 1100, df = 2, p-value <2e-16
Call:
garch(x = MarkPound, grad = "numerical", trace = FALSE) Box-Ljung test
Model: data: Squared.Residuals
GARCH(1,1) X-squared = 2.5, df = 1, p-value = 0.1
Residuals: Remarks:
Min 1Q Median 3Q Max

@ Warning: OPG standard errors assuming Gaussian innovations.
@ More flexible GARCH modeling via garchFit () in fGarch.

-6.79739 -0.53703 -0.00264 0.55233 5.24867
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