
Applied Econometrics

with

Chapter 6

Time Series

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 0 / 67

Time Series

Overview

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 1 / 67

Overview

Time series data: typical in macroeconomics and finance

Notation: yt , t = 1, . . . , n.

Contents:

Infrastructure and “naive” methods

ARMA modeling

Stationarity, unit roots, and cointegration

Time series regression and structural change

Extensions (GARCH, structural time series models)

Focus is on time domain methodology.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 2 / 67

Overview

Background reading:

Brockwell and Davis (2002): Introduction to Time Series and
Forecasting, 2nd edition.

Brockwell and Davis (1991): Time Series – Theory and Methods,
2nd edition.

Franses (1998): Time Series Models for Business and Economic
Forecasting

Hamilton (1994): Time Series Analysis

. . .

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 3 / 67

Time Series

Infrastructure and “Naive”
Methods

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 4 / 67

Classes for time series data

Standard time series class in R is “ts”:

Aimed at regular series (annual, quarterly, monthly).

A “ts” object is either a numeric vector (univariate series) or a
numeric matrix (multivariate series).

"tsp" attribute reflects time series properties:
a vector of length 3 with start, end and frequency.

Create via ts(): supply data (numeric vector or matrix) plus
arguments start, end, and frequency.

Methods for standard generic functions: plot(), lines(),
str(), summary(), . . .

Additional time-series-specific methods: lag(), diff(),

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 5 / 67

Classes for time series data

Example: Quarterly consumption of non-durables in the United
Kingdom (from Franses 1998)

Plot:
R> data("UKNonDurables")
R> plot(UKNonDurables)

Time series properties:

R> tsp(UKNonDurables)

[1] 1955 1989 4

Subsets via window():

R> window(UKNonDurables, end = c(1956, 4))

Qtr1 Qtr2 Qtr3 Qtr4
1955 24030 25620 26209 27167
1956 24620 25972 26285 27659

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 6 / 67

Classes for time series data

Time

U
K

N
on

D
ur

ab
le

s

1955 1960 1965 1970 1975 1980 1985 1990

30
00

0
40

00
0

50
00

0
60

00
0

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 7 / 67

Classes for time series data

Drawbacks of “ts”:

Only numeric time stamps (more general date/time classes?)

Missing values cannot be omitted (start/end/frequency no longer
sufficient for reconstructing all time stamps!) – a problem with
irregular series, e.g., with many financial time series.

R packages for irregular series: several, we use zoo

Generalization of “ts”: time stamps of arbitrary type.

Numeric vectors or matrices, "index" attribute contains vector of
time stamps (not just "tsp" attribute!).

Regular series can be coerced back and forth between “ts” and
“zoo” via as.zoo() and as.ts().

“zoo” more convenient for daily data (e.g., “Date” time stamps) or
intraday data (e.g., “POSIXct” or “chron” time stamps).

More details: Zeileis and Grothendieck (JSS 2005).

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 8 / 67

(Linear) filtering

Linear filter: important class are finite moving averages

ŷt =
s∑

j=−r

ajyt+j , t = r + 1, . . . , n − s.

If r = s, filter is called symmetric.

In R: function filter()

Main argument filter takes vector containing ajs.

Can also apply recursive linear filters.

Example: (UKDriverDeaths, Harvey and Durbin, JRSS A 1986)

R> data("UKDriverDeaths")
R> plot(UKDriverDeaths)
R> lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12),
+ col = 2)

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 9 / 67

(Linear) filtering

Time

U
K

D
riv

er
D

ea
th

s

1970 1975 1980 1985

10
00

15
00

20
00

25
00

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 10 / 67

(Linear) filtering

Further examples:

rollapply() computes functions on moving data windows:

R> plot(rollapply(UKDriverDeaths, 12, sd))

filter() also provides autoregressive (recursive) filtering.

Generate 100 observations from AR(1) process:

R> set.seed(1234)
R> x <- filter(rnorm(100), 0.9, method = "recursive")

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 11 / 67

(Linear) filtering

Time

ro
lla

pp
ly

(U
K

D
riv

er
D

ea
th

s,
 1

2,
 s

d)

1970 1975 1980 1985

15
0

20
0

25
0

30
0

35
0

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 12 / 67

Decomposition

Can use filters for additive or multiplicative decomposition into
seasonal, trend, and irregular components.

In R:

decompose() takes simple symmetric filter for extracting trend,
derives seasonal component by averaging trend-adjusted
observations from corresponding periods.

stl() iteratively finds seasonal and trend components by loess
smoothing in moving data windows.

Examples:

R> dd_dec <- decompose(log(UKDriverDeaths))
R> dd_stl <- stl(log(UKDriverDeaths), s.window = 13)

R> plot(dd_dec$trend, ylab = "trend")
R> lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2)

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 13 / 67

Decomposition

7.
0

7.
4

7.
8

ob
se

rv
ed

7.
2

7.
4

7.
6

tr
en

d

−
0.

1
0.

1

se
as

on
al

−
0.

15
0.

00
0.

15

1970 1975 1980 1985

ra
nd

om

Time

Decomposition of additive time series

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 14 / 67

Decomposition

7.
0

7.
4

7.
8

da
ta

−
0.

1
0.

1

se
as

on
al

7.
2

7.
4

7.
6

tr
en

d

−
0.

15
0.

00
0.

15

1970 1975 1980 1985

re
m

ai
nd

er

time

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 15 / 67

Decomposition

Time

tr
en

d

1970 1975 1980 1985

7.
2

7.
3

7.
4

7.
5

7.
6

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 16 / 67

Exponential smoothing

HoltWinters() handles exponential smoothing and generalizations:

Recursively reweighted lagged observations for predictions.

Smoothing parameters determined by minimizing squared
prediction error on observed data.

Default: Holt-Winters filter with additive seasonal component.

Example: UKDriverDeaths

Historical sample up to 1982(12) (before change in legislation).

Use Holt-Winters to predict observations for 1983 and 1984.

R> dd_past <- window(UKDriverDeaths, end = c(1982, 12))
R> dd_hw <- HoltWinters(dd_past)
R> dd_pred <- predict(dd_hw, n.ahead = 24)

R> plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths))
R> lines(UKDriverDeaths)

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 17 / 67

Exponential smoothing

Holt−Winters filtering

Time

O
bs

er
ve

d
/ F

itt
ed

1970 1975 1980 1985

10
00

15
00

20
00

25
00

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 18 / 67

Time Series

Classical Model-Based Analysis

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 19 / 67

Classical model-based analysis

ARIMA(p, d , q) model is

φ(L)(1− L)dyt = θ(L)εt ,

with

φ(L) = 1− φ1L− . . .− φpLp, and

θ(L) = 1 + θ1L + . . .+ θqLq (note sign convention!),

εt ∼ WN(0, σ2).

Generalization for seasonal data: multiplicative seasonal ARIMA

Φ(Ls)φ(L)(1− Ls)D(1− L)dyt = θ(L)Θ(Ls)εt

Notation: SARIMA(p, d , q)(P,D,Q)s

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 20 / 67

Classical model-based analysis

Time series fitting functions in R:
ar() (from stats) fits AR models

univariate via Yule-Walker, OLS, ML, or Burg, and
multivariate (unrestricted VARs) by Yule-Walker, OLS, or Burg.

Order selection by AIC possible.

arima() (from stats) fits univariate ARIMA models, including
SARIMA models, ARIMAX, and subset ARIMA models.
Methods: unconditional ML or CSS.

arma() (from tseries) fits ARMA models by CSS.
Starting values via Hannan-Rissanen.
Note: Parameterization of intercept different from arima().

auto.arima() (from forecast): Order selection via AIC, BIC, or
AICC within user-defined set of models, fitting via arima().

StructTS() (from stats) fits structural time series models:
local level, local trend, and basic structural model.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 21 / 67

Classical model-based analysis

Box-Jenkins approach: use ACF and PACF for preliminary analysis.

In R: acf() and pacf().

Example: simulated AR(1)
R> set.seed(1234)
R> x <- filter(rnorm(100), 0.9, method = "recursive")
R> acf(x)
R> pacf(x)

Fit autoregression to x via ar():
R> ar(x)

Call:
ar(x = x)

Coefficients:
1

0.928

Order selected 1 sigma^2 estimated as 1.29

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 22 / 67

Classical model-based analysis

0 5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series x

5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

P
ar

tia
l A

C
F

Series x

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 23 / 67

Classical model-based analysis

Example: UKNonDurables

R> nd <- window(log(UKNonDurables), end = c(1970, 4))

Empirical ACFs and PACFs for

nonseasonal differences

seasonal and nonseasonal differences

R> acf(diff(nd), ylim = c(-1, 1))
R> pacf(diff(nd), ylim = c(-1, 1))
R> acf(diff(diff(nd, 4)), ylim = c(-1, 1))
R> pacf(diff(diff(nd, 4)), ylim = c(-1, 1))

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 24 / 67

Classical model-based analysis

0 1 2 3 4

−
1.

0
0.

0
0.

5
1.

0

Lag

A
C

F

Series diff(nd)

1 2 3 4

−
1.

0
0.

0
0.

5
1.

0

Lag

P
ar

tia
l A

C
F

Series diff(nd)

0 1 2 3 4

−
1.

0
0.

0
0.

5
1.

0

Lag

A
C

F

Series diff(diff(nd, 4))

1 2 3 4

−
1.

0
0.

0
0.

5
1.

0

Lag

P
ar

tia
l A

C
F

Series diff(diff(nd, 4))

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 25 / 67

Classical model-based analysis

Preliminary analysis suggests

double differencing (d = 1, D = 1),

some AR and MA effects – we use p = 0, 1, 2 and q = 0, 1, 2,

low-order seasonal AR and MA parts – we use P = 0, 1 and
Q = 0, 1.

This gives 36 parameter combinations in total. Manual solution:

Set up all parameter combinations via expand.grid().

Fit each SARIMA model using arima() in for() loop.

Store resulting BIC extracted from the model.
For BIC, use AIC() with k = log(length(nd)).

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 26 / 67

Classical model-based analysis

R> nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2,
+ sar = 0:1, sdiff = 1, sma = 0:1)
R> nd_aic <- rep(0, nrow(nd_pars))
R> for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd,
+ unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])),
+ k = log(length(nd)))
R> nd_pars[which.min(nd_aic),]

ar diff ma sar sdiff sma
22 0 1 1 0 1 1

Result is SARIMA(0, 1, 1)(0, 1, 1)4 – the airline model.

Refit to nd via
R> nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1))

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 27 / 67

Classical model-based analysis

R> nd_arima

Call:
arima(x = nd, order = c(0, 1, 1), seasonal = c(0, 1, 1))

Coefficients:
ma1 sma1

-0.353 -0.583
s.e. 0.143 0.138

sigma^2 estimated as 9.65e-05: log likelihood = 188.1, aic = -370.3

Diagnostic plots:
R> tsdiag(nd_arima)

Forecast remaining 18 years:
R> nd_pred <- predict(nd_arima, n.ahead = 18 * 4)

Graphical comparison with observed series:
R> plot(log(UKNonDurables))
R> lines(nd_pred$pred, col = 2)

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 28 / 67

Classical model-based analysis
Standardized Residuals

Time

1955 1960 1965 1970

−
3

0
2

0 1 2 3 4

−
0.

2
0.

8

Lag

A
C

F

ACF of Residuals

●

● ●
● ●

●
●

●
● ●

2 4 6 8 10

0.
0

0.
6

p values for Ljung−Box statistic

lag

p
va

lu
e

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 29 / 67

Classical model-based analysis

Time

lo
g(

U
K

N
on

D
ur

ab
le

s)

1955 1960 1965 1970 1975 1980 1985 1990

10
.2

10
.4

10
.6

10
.8

11
.0

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 30 / 67

Classical model-based analysis

Useful convenience functions for exploring ARMA models (all in stats):

acf2AR() – computes AR process exactly fitting given
autocorrelation function.

arima.sim() – simulation of ARIMA models.

ARMAacf() – theoretical (P)ACF for a given ARMA model.

ARMAtoMA() – MA(∞) representation for a given ARMA model.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 31 / 67

Time Series

Stationarity, Unit Roots, and
Cointegration

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 32 / 67

Stationarity, unit roots, and cointegration

Many time series in macroeconomics and finance are nonstationary.

Need tests for

unit roots,

stationarity,

cointegration.

We use same data set for all these topics.

Example: from Franses 1998

Bivariate time series of average monthly European spot prices for black
and white pepper (in US dollars per ton).
R> data("PepperPrice")
R> plot(PepperPrice, plot.type = "single", col = 1:2)
R> legend("topleft", c("black", "white"), bty = "n",
+ col = 1:2, lty = rep(1,2))

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 33 / 67

Stationarity, unit roots, and cointegration

Time

P
ep

pe
rP

ric
e

1975 1980 1985 1990 1995

10
00

30
00

50
00

70
00

black
white

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 34 / 67

Unit-root tests

Available tests:

Augmented Dickey-Fuller (ADF) test: t test of H0 : % = 0 in

∆yt = α + δt + %yt−1 +
k∑

j=1

φj∆yt−j + εt .

In R: adf.test() from tseries.

Phillips-Perron (PP) test:
Same idea as ADF, but nonparametric (HAC) correction for
autocorrelation.
In R: pp.test() from tseries.

Elliott-Rothenberg-Stock (ERS):
Same idea as ADF, but GLS detrending.
In R: ur.ers() from urca.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 35 / 67

Unit-root tests

ADF in levels:
R> library("tseries")
R> adf.test(log(PepperPrice[, "white"]))

Augmented Dickey-Fuller Test

data: log(PepperPrice[, "white"])
Dickey-Fuller = -1.7, Lag order = 6, p-value = 0.7
alternative hypothesis: stationary

ADF in first differences:
R> adf.test(diff(log(PepperPrice[, "white"])))

Augmented Dickey-Fuller Test

data: diff(log(PepperPrice[, "white"]))
Dickey-Fuller = -5.3, Lag order = 6, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff(log(PepperPrice[, "white"]))) :
p-value smaller than printed p-value

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 36 / 67

Unit-root tests

PP in levels (by default with time trend):

R> pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)")

Phillips-Perron Unit Root Test

data: log(PepperPrice[, "white"])
Dickey-Fuller Z(t_alpha) = -1.6, Truncation lag
parameter = 5, p-value = 0.7
alternative hypothesis: stationary

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 37 / 67

Stationarity tests

Kwiatkowski, Phillips, Schmidt and Shin (J. Econometrics 1992):

Test H0 : rt ≡ 0 in

yt = dt + rt + εt ,

where

dt deterministic trend,

rt random walk,

εt stationary (I(0)) error process.

Two variants:

dt = α, level stationarity (under H0).

dt = α + βt , trend stationarity (under H0).

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 38 / 67

Stationarity tests

KPSS without time trend:

R> kpss.test(log(PepperPrice[, "white"]))

KPSS Test for Level Stationarity

data: log(PepperPrice[, "white"])
KPSS Level = 0.91, Truncation lag parameter = 3, p-value
= 0.01

Warning message:
p-value smaller than printed p-value in:
kpss.test(log(PepperPrice[, "white"]))

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 39 / 67

Cointegration

Pepper series exhibit common nonstationary features.

Cointegration tests in R:

Engle-Granger two-step method
Available in po.test() from tseries (named after Phillips and
Ouliaris, Econometrica 1990).

Johansen test
Full-information maximum likelihood approach in pth-order
cointegrated VAR. Error correction form (ECM) is (without
deterministic components)

∆yt = Πyt−1 +

p−1∑

j=1

Γj∆yt−j + εt .

Trace and lambda-max tests available in ca.jo() from urca.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 40 / 67

Cointegration

Engle-Granger two-step with black pepper regressed on white pepper:

R> po.test(log(PepperPrice))

Phillips-Ouliaris Cointegration Test

data: log(PepperPrice)
Phillips-Ouliaris demeaned = -24, Truncation lag
parameter = 2, p-value = 0.02

Suggests both series are cointegrated.

Remarks:

Test with reverse regression is
po.test(log(PepperPrice[,2:1]))

Problem: treatment asymmetric, but concept cointegration
demands symmetric treatment!

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 41 / 67

Cointegration

Johansen test with constant term

R> library("urca")
R> pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const",
+ type = "trace")
R> summary(pepper_jo)

######################
Johansen-Procedure
######################

Test type: trace statistic , without linear trend and
constant in cointegration

Eigenvalues (lambda):
[1] 4.932e-02 1.351e-02 2.082e-17

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 42 / 67

Cointegration

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct
r <= 1 | 3.66 7.52 9.24 12.97
r = 0 | 17.26 17.85 19.96 24.60

Eigenvectors, normalised to first column:
(These are the cointegration relations)

black.l2 white.l2 constant
black.l2 1.0000 1.000 1.000
white.l2 -0.8892 -5.099 2.281
constant -0.5570 33.027 -20.032

Weights W:
(This is the loading matrix)

black.l2 white.l2 constant
black.d -0.07472 0.002453 -4.958e-18
white.d 0.02016 0.003537 8.850e-18

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 43 / 67

Time Series

Time Series Regression and
Structural Change

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 44 / 67

More on fitting dynamic regression models

Example: SARIMA(1, 0, 0)(1, 0, 0)12 for UKDriverDeaths

yt = β1 + β2 yt−1 + β3 yt−12 + εt , t = 13, . . . , 192.

Two approaches:

Approach 1: set up regressors “by hand” and call lm()

R> dd <- log(UKDriverDeaths)
R> dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1),
+ dd12 = lag(dd, k = -12))
R> lm(dd ~ dd1 + dd12, data = dd_dat)

Call:
lm(formula = dd ~ dd1 + dd12, data = dd_dat)

Coefficients:
(Intercept) dd1 dd12

0.421 0.431 0.511

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 45 / 67

More on fitting dynamic regression models

Approach 2: use convenience interface dynlm() from dynlm

R> library("dynlm")
R> dynlm(dd ~ L(dd) + L(dd, 12))

Time series regression with "ts" data:
Start = 1970(1), End = 1984(12)

Call:
dynlm(formula = dd ~ L(dd) + L(dd, 12))

Coefficients:
(Intercept) L(dd) L(dd, 12)

0.421 0.431 0.511

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 46 / 67

Structural change tests

Features of UKDriverDeaths:

Decrease in mean number of casualties after policy change.

Parameters of time series model unlikely to be stable throughout
sample period.

Package strucchange implements large collection of tests for structural
change (parameter instability).

Two types of tests:

Fluctuation tests.

Tests based on F statistics.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 47 / 67

Structural change tests

Fluctuation tests:

Assess structural stability by capturing fluctuation in CUSUMs or
MOSUMs of

residuals (OLS or recursive),
model scores (empirical estimating functions), or
parameter estimates (recursive or rolling).

Idea: under null hypothesis of parameter stability, resulting
“fluctuation processes” exhibit limited fluctuation, under alternative
of structural change, fluctuation is generally increased.

Evidence for structural change if empirical fluctuation process
crosses boundary that corresponding limiting process crosses only
with probability α.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 48 / 67

Structural change tests

Fluctuation tests in strucchange:

empirical fluctuation processes via efp().

Result is object of class “efp”.

plot() method for performing test graphically.

sctest() method (for structural change test) for traditional
significance test.

Example: OLS-CUSUM for UKDriverDeaths

OLS-CUSUM process: Scaled CUSUM of OLS residuals ε̂t = yt − x>t β̂

efp(s) =
1

σ̂
√

n

bnsc∑

t=1

ε̂t , 0 ≤ s ≤ 1.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 49 / 67

Structural change tests

In R:

R> library("strucchange")
R> dd_ocus <- efp(dd ~ dd1 + dd12, data = dd_dat,
+ type = "OLS-CUSUM")

Test using maximum absolute deviation of efp (default functional)

R> sctest(dd_ocus)

OLS-based CUSUM test

data: dd_ocus
S0 = 1.5, p-value = 0.02

R> plot(dd_ocus)

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 50 / 67

Structural change tests

OLS−based CUSUM test

Time

E
m

pi
ric

al
 fl

uc
tu

at
io

n
pr

oc
es

s

1970 1975 1980 1985

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 51 / 67

Structural change tests

Tests based on F statistics:

Designed to have good power for single-shift alternatives (of
unknown timing).

Basic idea is to compute an F statistic (or Chow statistic) for each
conceivable breakpoint in given interval (trimming parameter).
Reject the null hypothesis of structural stability if

any of these statistics (sup F test)
some other functional (Andrews-Ploberger, Econometrica 1994:
mean-F , exp-F)

exceeds critical value.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 52 / 67

Structural change tests

In R: function Fstats(), with interface similar to efp()

supF test with 10% trimming via

R> dd_fs <- Fstats(dd ~ dd1 + dd12, data = dd_dat, from = 0.1)
R> sctest(dd_fs)

supF test

data: dd_fs
sup.F = 19, p-value = 0.007

Visualization:

R> plot(dd_fs, main = "supF test")

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 53 / 67

Structural change tests

supF test

Time

F
 s

ta
tis

tic
s

1972 1974 1976 1978 1980 1982

0
5

10
15

20

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 54 / 67

Structural change tests

Further Example: German M1 money demand

Lütkepohl, Teräsvirta and Wolters (JAE 1999) use error correction
model (ECM) for German M1.

GermanM1 contains data from 1961(1) to 1995(4) on per capita
M1, price index, per capita GNP (all in logs) and an interest rate.

Load and set up model

R> data("GermanM1")
R> LTW <- dm ~ dy2 + dR + dR1 + dp + m1 + y1 + R1 + season

Recursive estimates (RE) test (Ploberger, Krämer and Kontrus, J.
Econometrics 1989)

R> m1_re <- efp(LTW, data = GermanM1, type = "RE")
R> plot(m1_re)

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 55 / 67

Structural change tests

RE test (recursive estimates test)

Time

E
m

pi
ric

al
 fl

uc
tu

at
io

n
pr

oc
es

s

1965 1970 1975 1980 1985 1990 1995

0.
0

0.
5

1.
0

1.
5

2.
0

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 56 / 67

Dating structural changes

Setup is linear regression model

yt = x>t β
(j) + εt , t = nj−1 + 1, . . . , nj , j = 1, . . . ,m + 1,

where
j = 1, . . . ,m segment index,
β(j) segment-specific set of regression coefficients,
{n1, . . . , nm} set of unknown breakpoints (convention: n0 = 0 and
nm+1 = n).

In R: function breakpoints()

Uses dynamic programming algorithm based on Bellman principle.
Finds those m breakpoints that minimize RSS of model with m + 1
segments.
Bandwidth parameter h determines minimal segment size of h · n
observations.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 57 / 67

Dating structural changes

Example: UKDriverDeaths

Breakpoints for SARIMA model with minimal segment size of 10%

R> dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1)

R> coef(dd_bp, breaks = 2)

(Intercept) dd1 dd12
1970(1) - 1973(10) 1.458 0.1173 0.6945
1973(11) - 1983(1) 1.534 0.2182 0.5723
1983(2) - 1984(12) 1.687 0.5486 0.2142

Visualization

R> plot(dd_bp, legend = FALSE, main = "")

R> plot(dd)
R> lines(fitted(dd_bp, breaks = 2), col = 4)
R> lines(confint(dd_bp, breaks = 2))

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 58 / 67

Dating structural changes

●
●

●
●

●

●

●

●

●

0 2 4 6 8

−
30

0
−

28
0

−
26

0
−

24
0

−
22

0

Number of breakpoints

●

●

●

●
●

●

● ● ● 1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 59 / 67

Dating structural changes

Time

dd

1970 1975 1980 1985

7.
0

7.
2

7.
4

7.
6

7.
8

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 60 / 67

Time Series

Extensions

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 61 / 67

Extensions

Further packages for time series analysis

dse – Multivariate time series modeling with state-space and
vector ARMA (VARMA) models.
FinTS – R companion to Tsay (2005).
forecast – Univariate time series forecasting, including
exponential smoothing, state space, and ARIMA models.
fracdiff – ML estimation of ARFIMA models and semiparametric
estimation of the fractional differencing parameter.
longmemo – Convenience functions for long-memory models.
mFilter – Time series filters, including Baxter-King, Butterworth,
and Hodrick-Prescott.
Rmetrics – Some 20 packages for financial engineering and
computational finance, including GARCH modeling in fGarch.
tsDyn – Nonlinear time series models: STAR, ESTAR, LSTAR.
vars – (Structural) vector autoregressive (VAR) models

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 62 / 67

Structural time series models

Basic structural model has measurement equation

yt = µt + γt + εt , εt ∼ N (0, σ2
ε) i.i.d.

Seasonal component γt (with frequency s) is

γt+1 = −
s−1∑

j=1

γt+1−j + ωt , ωt ∼ N (0, σ2
ω) i.i.d.

Local level and trend components are

µt+1 = µt + ηt + ξt , ξt ∼ N (0, σ2
ξ) i.i.d.,

ηt+1 = ηt + ζt , ζt ∼ N (0, σ2
ζ) i.i.d.

All error terms mutually independent.
In R:
R> dd_struct <- StructTS(log(UKDriverDeaths))

R> plot(cbind(fitted(dd_struct), residuals(dd_struct)))

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 63 / 67

Structural time series models

7.
1

7.
3

7.
5

7.
7

fit
te

d(
dd

_s
tr

uc
t)

.le
ve

l

−
0.

00
6

−
0.

00
2

0.
00

2

fit
te

d(
dd

_s
tr

uc
t)

.s
lo

pe

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

fit
te

d(
dd

_s
tr

uc
t)

.s
ea

−
3

−
2

−
1

0
1

2
3

1970 1975 1980 1985

re
si

du
al

s(
dd

_s
tr

uc
t)

Time

cbind(fitted(dd_struct), residuals(dd_struct))

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 64 / 67

GARCH models

Time

M
ar

kP
ou

nd

0 500 1000 1500 2000

−
2

−
1

0
1

2
3

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 65 / 67

GARCH models

tseries function garch() fits GARCH(p, q) with Gaussian innovations.
Default is GARCH(1, 1):

yt = σtνt , νt ∼ N (0, 1) i.i.d.,

σ2
t = ω + αy2

t−1 + βσ2
t−1, ω > 0, α > 0, β ≥ 0.

Example: DEM/GBP FX returns for 1984-01-03 through 1991-12-31
R> mp <- garch(MarkPound, grad = "numerical", trace = FALSE)
R> summary(mp)

Call:
garch(x = MarkPound, grad = "numerical", trace = FALSE)

Model:
GARCH(1,1)

Residuals:
Min 1Q Median 3Q Max

-6.79739 -0.53703 -0.00264 0.55233 5.24867

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 66 / 67

GARCH models

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

a0 0.0109 0.0013 8.38 <2e-16
a1 0.1546 0.0139 11.14 <2e-16
b1 0.8044 0.0160 50.13 <2e-16

Diagnostic Tests:
Jarque Bera Test

data: Residuals
X-squared = 1100, df = 2, p-value <2e-16

Box-Ljung test

data: Squared.Residuals
X-squared = 2.5, df = 1, p-value = 0.1

Remarks:

Warning: OPG standard errors assuming Gaussian innovations.
More flexible GARCH modeling via garchFit() in fGarch.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 6 – Time Series – 67 / 67

