Sound quality evaluation

Overview

Multi-Attribute Probabilistic Choice Models

Florian Wickelmaier

Workshop on Psychometric Computing Vienna, January 23, 2009

Within-pair order effects

Probabilistic choice models

Perceived health risk of drugs

Within-pair order effects

Sound quality evaluation

Within-pair order effects

Sound quality evaluation

2

Probabilistic choice models Perceived health risk of drugs

Probabilistic choice models

Goal: Scaling of psychological attributes

Procedure:

Participants are not asked to provide a numerical judgment (e.g., on a rating scale), but their behavior in a choice situation is observed. Scaling follows from modeling the data.

- Psychological theory of decision making
- Easy task for participants: pairwise comparison between alternatives, avoiding "scale usage heterogeneity"
- Measurement-theoretical foundation: testable conditions for numerical representation, unique scale level

Choice models (1): Bradley-Terry-Luce (BTL) model

Perceived health risk of drugs

Choice of an alternative (x, y, ...) is probabilistic and depends on the weight (strength) of the alternative (u(x), u(y), ...)

BTL model equations:

Probabilistic choice models

$$P_{xy} = \frac{u(x)}{u(x) + u(y)} = \frac{1}{1 + \frac{k \cdot u(y)}{k \cdot u(x)}}$$

- *P_{xy}*: probability of choosing alternative *x* over *y* in a paired comparison
- $u(\cdot)$: ratio scale of the stimuli
- BTL model very parsimonious: only n 1 free parameters, n = number of stimuli
- BTL imposes strong restrictions on the choice probabilities

Choice between two options is independent of the context provided by the choice set

$$\frac{P(x, \{x, y\})}{P(y, \{x, y\})} = \frac{P(x, \{x, y, z\})}{P(y, \{x, y, z\})}$$

Problem: similarity between groups of stimuli may cause IIA to fail (Debreu, 1960; Rumelhart & Greeno, 1971; Zimmer et al., 2004; Choisel & Wickelmaier, 2007)

Consequence of IIA: strong stochastic transitivity

$$P_{xy} \ge 0.5, P_{yz} \ge 0.5 \Rightarrow P_{xz} \ge \max\{P_{xy}, P_{yz}\}$$

Probabilistic choice models Perceived health risk of drugs

Within-pair order effects

Choice models (2): "Elimination by aspects" (EBA) (Tversky, 1972)

Alternatives (stimuli) are characterized by various features (aspects)

Choice is based on a hidden (sequential) elimination process:

- Aspects are chosen with a probability proportional to their weight (strength)
- Stimuli without the desired aspects are eliminated from the set of alternatives, until only one stimulus remains
- Only the discriminating aspects influence the decision
- \rightarrow EBA model does not require context independence (IIA)
- \rightarrow Bradley-Terry-Luce (BTL) model is a special case of EBA

Within-pair order effects Sound quality evaluation

 $u(\cdot)$: ratio scale of the aspects

Scale value of x equals the sum of the characterizing aspect values

Example:

 $x' = \{\alpha, \beta, \zeta\}, y' = \{\gamma, \delta, \varepsilon, \zeta\} \rightsquigarrow P_{xy} = \frac{u(\alpha) + u(\beta)}{u(\alpha) + u(\beta) + u(\varepsilon) + u(\delta) + u(\varepsilon)}$

Perceived health risk of drugs

The eba package

Probabilistic choice models

- Provides functionality for fitting and testing probabilistic choice models: Bradley-Terry-Luce, elimination by aspects, preference tree, Thurstone-Mosteller
- Key functions

strans	Counting stochastic transitivity violations
eba	Fitting and testing EBA models
summary, anova	Extractor functions
plot, residuals	
group.test	Comparing samples of subjects
eba.order	Testing within-pair order effects

Manual

Wickelmaier, F. & Schmid, C. (2004). A Matlab function to estimate choice-model parameters from paired-comparison data. Behavior Research Methods, Instruments, & Computers, 36, 29-40.

5

6

Sound quality evaluation

Drugs

Alcohol

Heroine

• N = 192 stratified by sex and age, 48 in each subgroup

• Task: Which of the two drugs do you judge to be more

Survey: perceived health risk of drugs

dangerous for your health?

Cannabis Ecstasy

Tobacco

Cocaine

Descriptive statistics

Aggregate judgments (male participants, younger than 30)

	Alc	Tob	Can	Ecs	Her	Coc	Probability of choosing x over y :
Alc	0	28	35	10	4	7	
Tob	20	0	18	2	0	3	$\hat{P}_{x} = \frac{N_{x}}{N_{x}}$
Can	13	30	0	3	1	0	$N_{xy} = N_x + N_y$
Ecs	38	46	45	0	1	17	-
Her	44	48	47	47	0	44	Example:
Coc	41	45	48	31	4	0	<u>^</u> 28
							$P_{Alc, Tob} = \frac{1}{28 + 20} = 0.58$

Counting the number of transitivity violations

strans(da	at)			
	violations	error.ratio	mean.dev	max.dev
weak	0	0.00	0.0000	0.0000
moderate	1	0.05	0.0417	
strong	5	0.25	0.1458	
Number of	Tests: 2	0		

•	Analyses	performed	separately	/ in	the	four	subgroups	

• Each participant did all $6 \cdot 5/2 = 15$ pairwise comparisons.

Probabilistic	choice	models	

Within-pair order effects Sound quality evaluation

BTL model

```
Fitting a BTL model using the eba() function
```

Perceived health risk of drugs

btl <- eba(dat)</pre>

Obtaining summary statistics and model tests

summary(btl)

. . . Model tests: Df1 Df2 logLik1 logLik2 Deviance Pr(>|Chi|) EBA 5 15 -34.09 -21.62 24.94 0.00546 ** Effect 0 5 -284.57 -34.09 500.97 < 2e-16 *** 1 15 -42.84 -42.84 1.00000 Imbalance 0.00

AIC: 78.181 Pearson Chi2: 28.09

The BTL model does not describe the data adequately $(G^2(10) = 24.94, p < .001).$

Perceived health risk of drugs

Model structure

Probabilistic choice models

$$A_{1} = \{\{\alpha\}, \{\beta, \eta\}, \{\gamma, \eta\}, \{\delta, \eta\}, \{\varepsilon, \eta\}, \{\zeta, \eta\}\}$$

Within-pair order effects

A1 <- list(c(1), c(2,7), c(3,7), c(4,7), c(5,7), c(6,7)) eba1 <- eba(dat, A1)

Non-alcohol drugs share a feature that affects decision when comparing them with alcohol.

9

10

Sound quality evaluation

EBA model with two additional aspects - EBA2

Model structure

$$\mathsf{A}_{2} = \{\{\alpha\}, \{\beta, \eta\}, \{\gamma, \eta\}, \{\delta, \eta, \vartheta\}, \{\varepsilon, \eta, \vartheta\}, \{\zeta, \eta, \vartheta\}\}$$

A2 <- list(c(1),c(2,7),c(3,7),c(4,7,8),c(5,7,8),c(6,7,8)) eba2 <- eba(dat, A2)

Three of the non-alcohol drugs share a feature that comes into play only when comparing them with the other drugs.

13

Sound quality evaluation

Probabilistic choice models

Within-pair order effects

Scales derived from EBA model

Perceived health risk of drugs

- Younger males judge heroine to be about 13 times as dangerous as alcohol.
- Older males judge heroine to be only about 8 times as dangerous as alcohol.

Nested models can be compared using likelihood ratio tests.

а	nova (1	btl, eba1,	eba2)							
	Model	Resid. df	Resid.	Dev		Tes	st	\mathtt{Df}	LR stat.	Pr(Chi)
1	btl	10	24.9	4225				NA	NA	NA
2	eba1	g	17.5	4611	1	vs	2	1	7.396143	0.006536
3	eba2	8	11.4	5401	2	vs	3	1	6.092099	0.013579

Non-nested models may be selected based on information criteria.

AIC(btl, eba1, eba2) df AIC btl 5 78.18143 eba1 6 72.78528 eba2 7 68.69318

Conclusion: The elimination-by-aspects model with two extra parameters (eba2) fits the data best.

Within-pair order effects

Comparing subsamples

Is the same scaling valid in several groups?

Comparing male participants younger and older than 30 years

```
males <- array(c(young, old), c(6,6,2))</pre>
```

<pre>group.test(males,</pre>			A2)									
	Df1	Df2	logLik1	logLik2	Deviance	Pr(> Chi)						
EBA.g	14	30	-60.49	-48.94	23.09	0.111307						
Group	7	14	-74.08	-60.49	27.18	0.000309	***					
Effect	0	7	-490.56	-74.08	832.96	< 2e-16	***					
Imbalance	1	30	-85.69	-85.69	0.00	1.000000						

The scales of perceived health risk are significantly different $(G^2(7) = 27.18, p = .0003)$ in the two groups.

14

Perceived health risk of drugs Within-pair order effects

Summary

- Pronounced differences between drugs w.r.t. perceived health risk
- Differences between male/female and younger/older participants
- Bradley-Terry-Luce model not valid in the male samples
- Elimination-by-aspects model with two additional parameters fits the data
- Elimination-by-aspects modeling is now easy to do using eba()

17

Sound quality evaluation

Probabilistic choice models Perceived health risk of drugs

Within-pair order effects Sound quality evaluation

Order effect: Davidson-Beaver (DB) model

Generalization of BTL model:

– Multiplicative parameter ϑ accounts for order of presentation

Model equations:

$$P_{xy|x} = rac{u(x)}{u(x) + artheta_{xy} \cdot u(y)}, \qquad P_{xy|y} = rac{artheta_{xy} \cdot u(x)}{artheta_{xy} \cdot u(x) + u(y)}$$

- *P_{xy|x}*: probability of choosing alternative *x* over *y* given *x* presented first
- $\vartheta_{xy} > 1$: advantage for the second stimulus
- $\vartheta_{xy} < 1$: advantage for the first stimulus
- Special case: $\vartheta_{xy} = \vartheta$ for all pairs of stimuli

Modeling order effects: Motivation

- Paired-comparison scaling has advantages over direct scaling procedures
 - Only qualitative (binary) judgments required
 - Consistency (transitivity) of judgments may be evaluated
- In paired-comparison experiments, stimuli are often presented sequentially
- How can a potential bias for one presentation interval be quantified?

Probabilistic choice models Perceived health risk of drugs

Within-pair order effects Sound quality evaluation

EBA model with order effect

Generalization of Davidson-Beaver model:

- Multiplicative parameter ϑ accounts for order of presentation
- Context independence of choice is not required

Model equations:

$$P_{xy|x} = \frac{\sum_{\alpha \in x' \setminus y'} u(\alpha)}{\sum_{\alpha \in x' \setminus y'} u(\alpha) + \vartheta_{xy} \cdot \sum_{\beta \in y' \setminus x'} u(\beta)}$$

- $\vartheta_{xy} > 1$: advantage for the second stimulus
- $\vartheta_{xy} < 1$: advantage for the first stimulus
- Special case: $\vartheta_{xy} = \vartheta$ for all pairs of stimuli

18

Sound quality evaluation

Sound quality evaluation

_

Application: Perceptual evaluation of multichannel sound (Choisel & Wickelmaier, 2006, JAES)

Probabilistic choice models

Perceived health risk of drugs Within-pair order effects

Ordered paired-comparison data

Row stimulus first										C	olur	nn	stin	nulu	s fi	rst
	mo	ph	st	WS	ma	u1	u2	or		mo	ph	st	WS	ma	u1	u2
mo	-	6	0	2	1	2	1	0	mo	-	4	2	0	2	3	1
ph	14	-	1	2	2	3	3	1	ph	15	-	0	0	6	3	6
st	19	19	-	7	0	8	10	2	st	18	19	-	7	9	8	13
ws	18	18	13	-	6	9	10	5	WS	19	19	12	-	9	11	11
ma	19	17	19	14	-	12	14	5	ma	17	14	11	10	-	14	19
u1	17	17	12	11	8	-	13	2	u1	17	16	11	8	5	_	13
u2	19	16	9	10	5	7	-	7	u2	18	14	7	8	1	6	-
or	19	19	18	14	14	18	12	-	or	17	17	12	11	7	15	13

- When st was presented first, nobody chose it over ma

- When st was presented second, 9 subjects chose it over ma

Perceived health risk of drugs W

Within-pair order effects Sound quality evaluation

Perceptual evaluation of multichannel sound (Choisel & Wickelmaier, 2007, JASA)

Subjects: 39 selected listeners (27 male, 12 female)

Procedure:

- 2IFC (all possible paired comparisons among 8 audio formats)
- within-pair order counterbalanced
- repeated for four musical excerpts (2 \times classic, 2 \times pop)

Task 1: Select the sound that is more \ldots wide, elevated, spacious, enveloping, far ahead, bright, clear, natural

Task 2: Select the sound that you prefer (measured $2\times$)

Envelopment: "A sound is enveloping when it wraps around you. A very enveloping sound will give you the impression of being immersed in it, while a nonenveloping one will give you the impression of being outside of it."

Probabilistic choice models Perceived health risk of drugs Within-pair order effects Sound quality evaluation

Descriptive statistics

strans(or	d1 + ord2)			
	violations	error.ratio	mean.dev	max.dev
weak	0	0.0000	0.0000	0.0000
moderate	2	0.0357	0.0385	0.0513
strong	23	0.4107	0.0803	0.2051
Number of	Tests: 56	3		

- Many violations of strong stochastic transitivity
- BTL model inadequate?

Davidson-Beaver (DB) model

Fitting a DB model using the eba.order() function

```
dabe <- eba.order(ord1, ord2)</pre>
summary(dabe)
. . .
Order effects (HO: parameter = 1):
       Estimate Std. Error z value Pr(>|z|)
                               3.458 0.000545 ***
       1.35513
                    0.10271
order
Model tests:
          Df1 Df2 logLik1 logLik2 Deviance Pr(>|Chi|)
                    -112.4
                              -74.2
            8
                56
                                       76.407
                                                 0.00564 **
EBA.order
Order
            7
                 8
                    -120.6
                            -112.4
                                      16.370
                                                5.21e-05 ***
Effect
            1
                 8
                    -328.3 -112.4 431.775
                                                 < 2e-16 ***
```

AIC: 240.80 Pearson Chi2: 66.65

Pronounced order effect, but DB model does not describe the data adequately ($G^2(48) = 76.41$, p = .006)

25

Probabilistic choice models Perceived health risk of drugs

Within-pair order effects Sound quality evaluation

EBA model with order effect

Comparing models

aı	anova(dabe, ebao)											
	Model	Resid.	df	Resid.	Dev		Tes	st	Df	LR	stat.	Pr(Chi)
1	dabe		48	76.4	0717				NA		NA	NA
2	ebao		47	63.3	7553	1	vs	2	1	13	.03164	0.000306

EBA order-effect model fits better than the DB model.

summary(ebao)

When two equally enveloping sounds are compared, the second one is chosen 36% more often than the first one.

EBA model with order effect

Model structure

Hypothesis: envelopment judged differently, depending on whether or not there are distinct sources (instruments) in surround channels

Probabilistic choice models Perceived health risk of drugs Within-pair order effects

Sound quality evaluation

26

Scale derived from EBA order-effect model

- Original five-channel recording about 13 times as enveloping as mono downmix
- Commercially available upmix algorithms not more enveloping than stereo

Probabilistic choice models

Summary

- Pronounced order effects in the paired-comparison judgments
- For seven out of nine auditory attributes (including preference), biases favored the second choice interval

Exceptions: distance (first interval), brightness (no order effect, $\vartheta = 1$)

• EBA order-effect model allows for measuring the magnitude of such biases where context independence (IIA) of judgments does not hold

Thank you for your attention

florian.wickelmaier@uni-tuebingen.de

The 'eba' package http://CRAN.r-project.org

29

31

Additional slides

References

References

- Choisel, S. & Wickelmaier, F. (2006). Extraction of auditory features and elicitation of attributes for the assessment of multichannel reproduced sound. *Journal of the Audio Engineering Society, 54*, 815–826.
- Choisel, S. & Wickelmaier, F. (2007). Evaluation of multichannel reproduced sound: scaling auditory attributes underlying listener preference. *Journal of the Acoustical Society of America*, *121*, 388–400.
- Debreu, G. (1960). Review of R. D. Luce's Individual choice behavior: A theoretical analysis. *American Economic Review*, *50*, 186–188.
- Rumelhart, D. L. & Greeno, J. G. (1971). Similarity between stimuli: An experimental test of the Luce and Restle choice models. *Journal of Mathematical Psychology*, *8*, 370–381.
- Tversky, A. (1972). Elimination by aspects: a theory of choice. Psychological Review, 79, 281–299.
- Wickelmaier, F. & Schmid, C. (2004). A Matlab function to estimate choice model parameters from paired-comparison data. *Behavior Research Methods, Instruments, & Computers, 36*, 29–40.
- Zimmer, K., Ellermeier, W., & Schmid, C. (2004). Using probabilistic choice models to investigate auditory unpleasantness. Acta Acustica united with Acustica, 90, 1019–1028.

References

Additional slides

30

32

Predicting preference from specific auditory attibutes (Choisel & Wickelmaier, 2007, JASA)

Equal-preference contours for eight audio formats

Classical music