Overview

Multi-Attribute Probabilistic Choice Models

Florian Wickelmaier

Workshop on Psychometric Computing
Vienna, January 23, 2009

Probabilistic choice models

Goal: Scaling of psychological attributes

Procedure:

Participants are not asked to provide a numerical judgment (e.g., on a rating scale), but their behavior in a choice situation is observed. Scaling follows from modeling the data.

- Psychological theory of decision making
- Easy task for participants: pairwise comparison between alternatives, avoiding "scale usage heterogeneity"
- Measurement-theoretical foundation: testable conditions for numerical representation, unique scale level

Probabilistic choice models

Perceived health risk of drugs

Within-pair order effects

Sound quality evaluation

Choice models (1): Bradley-Terry-Luce (BTL) model
Choice of an alternative (x, y, \ldots) is probabilistic and depends on the weight (strength) of the alternative $(u(x), u(y), \ldots)$

BTL model equations:

$$
P_{x y}=\frac{u(x)}{u(x)+u(y)}=\frac{1}{1+\frac{k \cdot u(y)}{k \cdot u(x)}}
$$

- $P_{x y}$: probability of choosing alternative x over y in a paired comparison
- $u(\cdot)$: ratio scale of the stimuli
- BTL model very parsimonious: only $n-1$ free parameters, $n=$ number of stimuli
- BTL imposes strong restrictions on the choice probabilities

Independence of irrelevant alternatives (IIA)

Choice between two options is independent of the context provided by the choice set

$$
\frac{P(x,\{x, y\})}{P(y,\{x, y\})}=\frac{P(x,\{x, y, z\})}{P(y,\{x, y, z\})}
$$

Problem: similarity between groups of stimuli may cause IIA to fail (Debreu, 1960; Rumelhart \& Greeno, 1971; Zimmer et al., 2004; Choisel \& Wickelmaier, 2007)

Consequence of IIA: strong stochastic transitivity

$$
P_{x y} \geq 0.5, P_{y z} \geq 0.5 \Rightarrow P_{x z} \geq \max \left\{P_{x y}, P_{y z}\right\}
$$

Elimination by aspects (EBA): model equations

Stimuli x, y, \ldots characterized by a set of aspects $x^{\prime}, y^{\prime}, \ldots$

y^{\prime}
$x^{\prime} \backslash y^{\prime}$: aspects belonging to x, but not to y
$u(\cdot)$: ratio scale of the aspects
Scale value of x equals the sum of the characterizing aspect values

Example:

$$
x^{\prime}=\{\alpha, \beta, \zeta\}, y^{\prime}=\{\gamma, \delta, \varepsilon, \zeta\} \rightsquigarrow P_{x y}=\frac{u(\alpha)+u(\beta)}{u(\alpha)+u(\beta)+u(\gamma)+u(\delta)+u(\varepsilon)}
$$

Choice models (2): "Elimination by aspects" (EBA) (Tversky, 1972)

Alternatives (stimuli) are characterized by various features (aspects)

Choice is based on a hidden (sequential) elimination process:

- Aspects are chosen with a probability proportional to their weight (strength)
- Stimuli without the desired aspects are eliminated from the set of alternatives, until only one stimulus remains
- Only the discriminating aspects influence the decision
\rightarrow EBA model does not require context independence (IIA)
\rightarrow Bradley-Terry-Luce (BTL) model is a special case of EBA

The eba package

- Provides functionality for fitting and testing probabilistic choice models: Bradley-Terry-Luce, elimination by aspects, preference tree, Thurstone-Mosteller
- Key functions

strans	Counting stochastic transitivity violations
eba	Fitting and testing EBA models
summary, anova	Extractor functions
plot, residuals	
group.test	Comparing samples of subjects
eba.order	Testing within-pair order effects

- Manual

Wickelmaier, F. \& Schmid, C. (2004). A Matlab function to estimate choice-model parameters from paired-comparison data. Behavior Research Methods, Instruments, \& Computers, 36, 29-40.

Survey: perceived health risk of drugs

- $N=192$ stratified by sex and age, 48 in each subgroup
- Task: Which of the two drugs do you judge to be more dangerous for your health?
- Drugs

Alcohol	Tobacco
Cannabis	Ecstasy
Heroine	Cocaine

- Each participant did all $6 \cdot 5 / 2=15$ pairwise comparisons.
- Analyses performed separately in the four subgroups

BTL mode

Fitting a BTL model using the eba() function
btl <- eba(dat)
Obtaining summary statistics and model tests
summary (btl)

Model tests:
Df1 Df2 logLik1 logLik2 Deviance $\operatorname{Pr}(>|C h i|)$

	Df1	Df2	logLik1	logLik2	Deviance	$\operatorname{Pr}(>\mid$ Chil)	
EBA	5	15	-34.09	-21.62	24.94	0.00546	$* *$
Effect	0	5	-284.57	-34.09	500.97	$<2 e-16$	$* * *$

IC: 78.181
Pearson Chi2: 28.09
The BTL model does not describe the data adequately $\left(G^{2}(10)=24.94, p<.001\right)$.

Descriptive statistics

Aggregate judgments (male participants, younger than 30)

	Alc	Tob	Can	Ecs	Her	Coc
Alc	0	28	35	10	4	7
Tob	20	0	18	2	0	3
Can	13	30	0	3	1	0
Ecs	38	46	45	0	1	17
Her	44	48	47	47	0	44
Coc	41	45	48	31	4	0

Probability of choosing x over y :

$$
\hat{P}_{x y}=\frac{N_{x}}{N_{x}+N_{y}}
$$

Example:

$$
\hat{P}_{A l c, T o b}=\frac{28}{28+20}=0.58
$$

Counting the number of transitivity violations

strans(dat)				
	violations	error.ratio	mean.dev	max.dev
weak	0	0.00	0.0000	0.0000
moderate	1	0.05	0.0417	0.0417
strong	5	0.25	0.0625	0.1458

Number of Tests:	20			

EBA model with one additional aspect - EBA1

Model structure

$$
A_{1}=\{\{\alpha\},\{\beta, \eta\},\{\gamma, \eta\},\{\delta, \eta\},\{\varepsilon, \eta\},\{\zeta, \eta\}\}
$$

A1 <- list $(c(1), c(2,7), c(3,7), c(4,7), c(5,7), c(6,7))$ eba1 <- eba(dat, A1)

Non-alcohol drugs share a feature that affects decision when comparing them with alcohol.

EBA model with two additional aspects - EBA2
Model structure

$$
A_{2}=\{\{\alpha\},\{\beta, \eta\},\{\gamma, \eta\},\{\delta, \eta, \vartheta\},\{\varepsilon, \eta, \vartheta\},\{\zeta, \eta, \vartheta\}\}
$$

A2 <- list $(c(1), c(2,7), c(3,7), c(4,7,8), c(5,7,8), c(6,7,8))$
eba2 <- eba(dat, A2)
Three of the non-alcohol drugs share a feature that comes into play only when comparing them with the other drugs.

Model selection

Nested models can be compared using likelihood ratio tests.

anova(btl, eba1, eba2)								
Model	Resid.	df	Resid. Dev		Test	Df	LR	stat.

Non-nested models may be selected based on information criteria.
AIC(btl, eba1, eba2)
df AIC
btl 578.18143
eba1 672.78528
eba2 768.69318
Conclusion: The elimination-by-aspects model with two extra parameters (eba2) fits the data best.

$$
\text { Probabilistic choice models } \quad \text { Perceived health risk of drugs } \quad \text { Within-pair order effects } \quad \text { Sound quality evaluation }
$$

Scales derived from EBA model

Probabilistic choice models Perceived health risk of drugs Within-pair order effects Sound quality evaluation

Comparing subsamples

Is the same scaling valid in several groups?

Comparing male participants younger and older than 30 years
males <- array (c(young, old), c(6,6,2))
group.test(males, A2)

	Df1	Df2	logLik1	logLik2	Deviance	$\operatorname{Pr}(>\mid$ Chil)	
EBA.g	14	30	-60.49	-48.94	23.09	0.111307	
Group	7	14	-74.08	-60.49	27.18	0.000309	$* * *$
Effect	0	7	-490.56	-74.08	832.96	$<2 e-16$	$* * *$
Imbalance	1	30	-85.69	-85.69	0.00	1.000000	

The scales of perceived health risk are significantly different ($G^{2}(7)=27.18, p=.0003$) in the two groups.

Summary

- Pronounced differences between drugs w.r.t. perceived health risk
- Differences between male/female and younger/older participants
- Bradley-Terry-Luce model not valid in the male samples
- Elimination-by-aspects model with two additional parameters fits the data
- Elimination-by-aspects modeling is now easy to do using eba()
- Paired-comparison scaling has advantages over direct scaling procedures
- Only qualitative (binary) judgments required
- Consistency (transitivity) of judgments may be evaluated
- In paired-comparison experiments, stimuli are often presented sequentially
- How can a potential bias for one presentation interval be quantified?

Modeling order effects: Motivation

Perceived health risk of drugs Within-pair order effects Sound quality evaluation

Order effect: Davidson-Beaver (DB) model

Generalization of BTL model:

- Multiplicative parameter ϑ accounts for order of presentation

Model equations:

$$
P_{x y \mid x}=\frac{u(x)}{u(x)+\vartheta_{x y} \cdot u(y)}, \quad P_{x y \mid y}=\frac{\vartheta_{x y} \cdot u(x)}{\vartheta_{x y} \cdot u(x)+u(y)}
$$

- $P_{x y \mid x}$: probability of choosing alternative x over y given x presented first
- $\vartheta_{x y}>1$: advantage for the second stimulus
- $\vartheta_{x y}<1$: advantage for the first stimulus
- Special case: $\vartheta_{x y}=\vartheta$ for all pairs of stimuli

Probabilistic choice models
Perceived health risk of drugs
Within-pair order effects
ound quality evaluation

- Speial case: $\vartheta_{x y}=\vartheta$ for all pairs of stimulu

Probabilistic choice models
Perceived health risk of drugs
Within-pair order effects
Sound quality evaluation
EBA model with order effect

Generalization of Davidson-Beaver model:

- Multiplicative parameter ϑ accounts for order of presentation
- Context independence of choice is not required

Model equations:

$$
P_{x y \mid x}=\frac{\sum_{\alpha \in x^{\prime} \backslash y^{\prime}} u(\alpha)}{\sum_{\alpha \in x^{\prime} \backslash y^{\prime}} u(\alpha)+\vartheta_{x y} \cdot \sum_{\beta \in y^{\prime} \backslash x^{\prime}} u(\beta)}
$$

- $\vartheta_{x y}>1$: advantage for the second stimulus
- $\vartheta_{x y}<1$: advantage for the first stimulus
- Special case: $\vartheta_{x y}=\vartheta$ for all pairs of stimuli

Application: Perceptual evaluation of multichannel sound (Choisel \& Wickelmaier, 2006, JAES)

Perceptual evaluation of multichannel sound

 (Choisel \& Wickelmaier, 2007, JASA)Subjects: 39 selected listeners (27 male, 12 female)

Procedure:

- 2IFC (all possible paired comparisons among 8 audio formats)
- within-pair order counterbalanced
- repeated for four musical excerpts $(2 \times$ classic, $2 \times$ pop $)$

Task 1: Select the sound that is more . . . wide, elevated, spacious, enveloping, far ahead, bright, clear, natural

Task 2: Select the sound that you prefer (measured $2 \times$)
Envelopment: "A sound is enveloping when it wraps around you.
A very enveloping sound will give you the impression of being immersed in it, while a nonenveloping one will give you the impression of being outside of it."

Perceived health risk of drugs
Within-pair order effects
Sound quality evaluation

Descriptive statistics

strans (ord1 + ord2)				
	violations	error.ratio	mean.dev	max.dev
weak	0	0.0000	0.0000	0.0000
moderate	2	0.0357	0.0385	0.0513
strong	23	0.4107	0.0803	0.2051

Number of Tests:	56			

- Many violations of strong stochastic transitivity
- BTL model inadequate?
- When st was presented first, nobody chose it over ma
- When st was presented second, 9 subjects chose it over ma

Davidson-Beaver (DB) model
Fitting a DB model using the eba.order() function
dabe <- eba.order(ord1, ord2)
summary (dabe)
Order effects (HO: parameter = 1)
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
order $1.35513 \quad 0.10271 \quad 3.4580 .000545$ ***
Model tests:
Df1 Df2 logLik1 logLik2 Deviance $\operatorname{Pr}(>\mid$ Chil)

EBA.order	8	56	-112.4	-74.2	76.407	0.00564	$* *$
Order	7	8	-120.6	-112.4	16.370	$5.21 e-05$	$* * *$
Effect	1	8	-328.3	-112.4	431.775	$<2 e-16$	$* * *$

AIC: $\quad 240.80$
Pearson Chi2: 66.65
Pronounced order effect, but DB model does not describe the data adequately $\left(G^{2}(48)=76.41, p=.006\right)$

EBA model with order effect
Model structure

$$
A_{1}=\{\{\alpha, \iota\},\{\beta, \iota\},\{\gamma, \iota\},\{\delta, \iota\},\{\varepsilon\},\{\zeta\},\{\eta, \iota\},\{\theta\}\}
$$

A1 <- list $(c(1,9), c(2,9), c(3,9), c(4,9)$
$c(5), c(6), c(7,9), c(8))$
ebao <- eba.order (ord1, ord2, A1)
Hypothesis: envelopment judged differently, depending on whether or not there are distinct sources (instruments) in surround channels

EBA model with order effect

Comparing models
anova(dabe, ebao)
\quad Model Resid. df
1
dabe

EBA order-effect model fits better than the DB model.
summary (ebao)

```
Order effects (H0: parameter = 1):
    Estimate Std. Error z value Pr(>|z|)
order 1.36147 0.10336 3.497 0.000470 ***
```

When two equally enveloping sounds are compared, the second one is chosen 36% more often than the first one.

Probabilistic choice models
Perceived health risk of drugs
Within-pair order effects
Sound quality evaluation
Scale derived from EBA order-effect model

- Original five-channel recording about 13 times as enveloping as mono downmix
- Commercially available upmix algorithms not more enveloping than stereo
- Pronounced order effects in the paired-comparison judgments
- For seven out of nine auditory attributes (including preference), biases favored the second choice interval

Exceptions: distance (first interval), brightness (no order effect, $\vartheta=1$)

- EBA order-effect model allows for measuring the magnitude of such biases where context independence (IIA) of judgments does not hold

References

Choisel, S. \& Wickelmaier, F. (2006). Extraction of auditory features and elicitation of attributes for the assessment of multichannel reproduced sound. Journal of the Audio Engineering Society, 54, 815-826.
Choisel, S. \& Wickelmaier, F. (2007). Evaluation of multichannel reproduced sound: scaling auditory attributes underlying listener preference. Journal of the Acoustical Society of America, 121, 388-400.

Debreu, G. (1960). Review of R. D. Luce's Individual choice behavior: A theoretical analysis. American Economic Review, 50, 186-188.

Rumelhart, D. L. \& Greeno, J. G. (1971). Similarity between stimuli: An experimental test of the Luce and Restle choice models. Journal of Mathematical Psychology, 8, 370-381.

Tversky, A. (1972). Elimination by aspects: a theory of choice. Psychological Review, 79, 281-299.

Wickelmaier, F. \& Schmid, C. (2004). A Matlab function to estimate choice model parameters from paired-comparison data. Behavior Research Methods, Instruments, \& Computers, 36, 29-40.

Zimmer, K., Ellermeier, W., \& Schmid, C. (2004). Using probabilistic choice models to investigate auditory unpleasantness. Acta Acustica united with Acustica, 90, 1019-1028

Predicting preference from specific auditory attibutes (Choisel \& Wickelmaier, 2007, JASA)

Equal-preference contours for eight audio formats

Classical music

Pop music

