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. . . Numbers in Science . . .

“When you can measure what you are
speaking about, and express it in numbers,
you know something about it; but when
you cannot measure it, when you cannot
express it in numbers, your knowledge is of
a meager and unsatisfactory kind: it may
be the beginning of knowledge, but you are
scarcely, in your thoughts, advanced to the
stage of science, whatever the matter may
be.” (William Thomson Kelvin, 1889)
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. . . Numbers in Psychology . . .

“Anthropometry, or the art of measuring
the physical and mental faculties of human
beings, enables a shorthand description of
any individual by measuring a small sample
of his dimensions and qualities. This will
sufficiently define his bodily proportions,
his massiveness, strength, agility, keenness
of senses, energy, health, intellectual ca-
pacity and mental character, and will con-
stitute concise and exact numerical val-
ues for verbose and disputable estimates.”
(Francis Galton, 1905)
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. . . Numbers in Psychology . . .

So, imagine that some committee of experts has carefully designed

an ‘Athletic Quotient’ or ‘A.Q.’ test, intended to measure athletic

prowess. Suppose that three exceptional athletes have taken the

test, say Michael Jordan, Tiger Woods and Pete Sampras.

Conceivably, all three of them would get outstanding A.Q.’s. But

these high scores equating them would completely misrepresent how

essentially different from each other they are. One may be tempted

to salvage the numerical representation and argue that the

assessment, in this case, should be multidimensional. However,

adding a few numerical dimensions capable of differentiating

Jordan, Woods and Sampras would only be the first step in a

sequence. Including Greg Louganis or Pele to the evaluated lot

would require more dimensions, and there is no satisfactory end in

sight. (Falmagne et al., 2006, p. 63)
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Knowledge Structures (Doignon & Falmagne, 1985, 1999)

Goals

◮ Characterizing the strengths and weaknesses in all parts of a
knowledge domain

◮ Precise, non-numerical characterization of the state of
knowledge that is computationally tractable

◮ Building upon results from discrete mathematics and exploiting
the power of current computers

◮ Adaptive knowledge assessment
◮ Efficiently identifying the current state of knowledge based on

asking a minimal number of questions
◮ Adapting to the already given responses as experienced

teachers do in an oral examination

◮ Personalization in technology-enhanced learning
◮ Automatically select content that a person is ready to learn
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Deterministic Theory

Definitions

◮ A knowledge domain is identified with a set Q of
(dichotomous) items

◮ The knowledge state of a person is identified with the subset
K ⊆ Q of problems in the domain Q the person is capable of
solving

◮ A knowledge structure on the domain Q is a collection K of
subsets of Q that contains at least the empty set ∅ and the
set Q

◮ The subsets K ∈ K are the knowledge states
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Example

Study on Fear Symptoms (Stouffer et al., 1950)

◮ U.S soldiers who have been under fire report different physical
reactions to the dangers of battle (N = 93)

◮ Knowledge domain Q = {a, b, c , d} (item “solved” when
options in parenthesis are chosen)

a Violent pounding of the heart (sometimes, or often)
b Feeling of weakness, or feeling faint (sometimes, or often)
c Urinating in pants (sometimes, or often)
d Losing control of the bowels (once, sometimes, or often)
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Example

Study on Fear Symptoms (Stouffer et al., 1950)

◮ Absolute frequencies NR of response patterns

item
a b c d NR

1 0 0 0 40
0 0 0 0 7
0 1 0 0 2
1 0 0 1 3
1 1 0 0 23
1 0 1 1 1
1 1 0 1 9
1 1 1 0 1
1 1 1 1 7
84 42 9 20
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Example

Study on Fear Symptoms (Stouffer et al., 1950)

◮ Hasse-Diagram of response patterns

∅

{a}{b}

{a, b} {a, d}

{a, b, c} {a, b, d} {a, c, d}

{a, b, c, d}
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Example

Study on Fear Symptoms (Stouffer et al., 1950)

◮ Hasse-Diagram of response patterns (excluding {a, b, c})

∅

{a}{b}

{a, b} {a, d}

{a, b, d} {a, c, d}

{a, b, c, d}

a

d

c

b
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Probabilistic Knowledge Structures

Rationale

◮ If there are response errors then knowledge states K ⊆ Q and
response patterns R ⊆ Q have to be dissociated

Definition (Falmagne & Doignon, 1988a, 1988b)
◮ A probabilistic knowledge structure is defined by specifying

◮ a knowledge structure K on a knowledge domain Q (i.e. a
collection K ⊆ 2Q with ∅,Q ∈ K)

◮ a marginal distribution PK(K ) on the knowledge states K ∈ K
◮ the conditional probabilities P(R | K ) to observe response

pattern R given knowledge state K

The probability of the response pattern R ∈ R = 2Q is predicted by

PR(R) =
∑

K∈K

P(R | K ) · PK(K )
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Local stochastic independence

Assumptions

◮ Given the knowledge state K of a person
◮ the responses are stochastically independent over problems
◮ the response to each problem q only depends on the

probabilities
βq of a careless error
ηq of a lucky guess

◮ The probability of the response pattern R given the knowledge
state K reads

P(R | K) =





∏

q∈K\R

βq



·





∏

q∈K∩R

(1− βq)



·





∏

q∈R\K

ηq



·





∏

q∈Q\(R∪K)

(1− ηq)




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Theory

Probabilistic Knowledge Structure on Q = {a, b, c , d}
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Data

Observed frequencies NR of response patterns R ⊆ Q = {a, b, c , d}
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Maximum Likelihood Estimation

EM Algorithm

◮ Formulate the likelihood as if we have available the absolute
frequencies MRK of subjects who are in state K and produce
pattern R (complete data) instead of the absolute frequencies
NR of the response patterns R ∈ R (incomplete data)

“Expectation”

Compute

E(MRK ) = NR · P(K | R, β̂
(t)

, η̂(t), π̂(t))

“Maximization”

Estimate β̂
(t+1)

, η̂(t+1), π̂(t+1)

based on mRK = E(MRK )
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Maximum Likelihood Estimation

ML Estimates for Example Data

∅

bc

abc

abd
acd

abcd

0

.2

0

.2

0

.2

0

.2
0

.2

0

.2

0 .3

βa
βb
βc
βd

0 .3

ηa
ηb
ηc
ηd

16 | Jürgen Heller & Florian Wickelmaier

Introduction Knowledge Structures Parameter Estimation Implementation in R Concluding Remarks

Maximum Likelihood Estimation

ML Estimates for Example Data
◮ Global Fit

◮ Number of iterations (initial values: uniform distribution on
knowledge states, error rates 0.1)

2945

◮ log-Likelihood (multinomial model: −477.674)

L = −479.534

◮ Likelihood ratio corresponds to χ2(2) = 3.722, p = 0.156
(asymptotic theory!)

◮ Expected number of errors (minimum: 0.295)

E(T ) = 0.595, E(E ) = 0.297, E(G ) = 0.298
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Maximum Likelihood Estimation

Interim Conclusions

◮ Problems
◮ ‘Good fit’ (w.r.t likelihood-ratio statistic) not sufficient for

empirical validity of knowledge structure
◮ Fit may be obtained by inflating careless error rates βq and

lucky guess rates ηq, q ∈ Q
◮ What we want: Good fit with small values of βq and ηq

◮ ‘Workaround’
◮ Order constrained ML estimation (Stefanutti & Robusto, 2009)

◮ Parameter estimation in a restricted parameter space by
applying the EM algorithm subject to order constraints setting
upper bounds to the error rates

◮ How to motivate the upper bounds?
◮ Problems may arise when the estimates fall on the boundary

of the parameter space
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Minimum Discrepancy Method

Rationale
◮ For a response pattern R and a knowledge state K consider

the distance

d(R ,K ) = |(R \ K ) ∪ (K \ R)|,

which is based on the symmetric set-difference and specifies
the number of items that are elements of either, but not both
sets R and K

R K

R \ K K \ R
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Minimum Discrepancy Method

Rationale

◮ For a given response pattern R then consider the minimum of
the symmetric distances d(R ,K ) between R and all the
knowledge states K ∈ K

d(R ,K) = min
K∈K

d(R ,K )

◮ The basic idea is that any response pattern is assumed to be
generated by a close knowledge state

◮ leads to explicit (i.e. non-iterative) estimators of the error
probabilities

◮ minimizes the number of response errors and thus counteracts
an inflation of careless error and lucky guess probabilities

◮ A previously suggested implementation of this idea by Schrepp
(1999, 2001) is flawed
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Minimum Discrepancy Method

Assumptions

◮ A knowledge state K ∈ K is assigned to a response pattern
R ∈ R only if the distance d(R ,K ) is minimal

◮ Each of the minimal discrepant knowledge states is assigned
with the same probability

P̂(K | R) =
iRK∑

K∈K iRK

with

iRK =

{
1 d(R ,K ) = d(R ,K)
0 otherwise
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Minimum Discrepancy Method

MD Estimates for Example Data
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Minimum Discrepancy Method

MD Estimates for Example Data

◮ Global Fit
◮ Number of iterations

1

◮ log-Likelihood (multinomial model: −477.674)

L = −517.573

◮ Expected number of errors (minimum: 0.295)

E(T ) = 0.295, E(E ) = 0.208, E(G ) = 0.087
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Minimum Discrepancy ML Estimation

Modified EM Algorithm

◮ Modify the E-step in the EM algorithm to implement the
restriction

mRK = E(MRK | NR , β̂
(t)
, η̂(t), π̂(t)) = 0

whenever d(R ,K ) > d(R ,K)

◮ This leads to

mRK = NR ·
iRK · P(K | R , β̂

(t)
, η̂(t), π̂(t))

∑
K∈K iRK · P(K | R , β̂

(t)
, η̂(t), π̂(t))

◮ The M-step proceeds as usual
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Minimum Discrepancy ML Estimation

MDML Estimates for Example Data
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Minimum Discrepancy ML Estimation

MDML Estimates for Example Data

◮ Global Fit
◮ Number of iterations (initial values: uniform distribution on

knowledge states, error rates 0.1)

181

◮ log-Likelihood (multinomial model: −477.674)

L = −489.626

◮ Expected number of errors (minimum: 0.295)

E(T ) = 0.295, E(E ) = 0.212, E(G ) = 0.083
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Towards Package pks
Function mdml()

mdml(K, N.R, R = t(sapply(strsplit(names(N.R), ""), as.numeric)),

pi = NULL, beta = NULL, eta = NULL,

type = c("both", "error", "guessing"), equal = FALSE, radius.inc = 0,

method = c("ML", "MD", "MDML"), tol=0.0000001, maxiter = 5000)

◮ K knowledge structure (matrix)
◮ N.R vector of absolute frequencies of observed response

patterns
◮ R observed response patterns (matrix)
◮ pi, beta, eta vectors of initial parameter values
◮ type careless errors and/or lucky guesses occur
◮ radius.inc increment to include knowledge states beyond

the minimum distance
◮ method ML, or MD, or MDML estimation
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Towards Package pks
Example

> K

[,1] [,2] [,3] [,4]

0000 0 0 0 0

0110 0 1 1 0

1110 1 1 1 0

1101 1 1 0 1

1011 1 0 1 1

1111 1 1 1 1

> N.R

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

15 5 4 2 6 22 18 7 4 4 3

1011 1100 1101 1110 1111

12 2 37 39 20

> r.mdml <- mdml(K, N.R, type="both", method="MDML")

> print(r.mdml)
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Towards Package pks
Example (cont’d)

Parameter estimation in probabilistic knowledge structures

Method: Minimum discrepancy maximum likelihood

Number of knowledge states: 6

Number of response patterns: 16

Number of respondents: 200

Minimum discrepancy distribution (Mean = 0.295)

0 1

141 59

Number of iterations: 181

Mean number or errors (total = 0.295)

careless error lucky guess

0.2117973 0.0832027

log-Likelikood: -489.6255
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Towards Package pks
Example (cont’d)

Distribution of knowledge states

pi

0000 0.150000

0110 0.118203

1110 0.208634

1101 0.324999

1011 0.071367

1111 0.126797

Error and guessing parameters

beta eta

a 2.0060e-01 7.4570e-02

b 6.8881e-02 1.3552e-01

c 1.4925e-06 3.0358e-33

d 2.1726e-02 6.9632e-02

30 | Jürgen Heller & Florian Wickelmaier

Introduction Knowledge Structures Parameter Estimation Implementation in R Concluding Remarks

Concluding Remarks

◮ The MDML estimators
◮ minimize the expected total number of response errors
◮ maximize the likelihood subject to the above constraint

◮ Work in progress
◮ Generalize the minimum discrepancy criterion

◮ Include knowledge states that are at minimum distance plus
some increment

◮ Generalize the indicator function iRK to

iRK = F [d(R,K), d(R,K)]

with a real valued function F , non-increasing in its first
argument, and non-decreasing in its second argument

◮ Large scale applications
◮ identifiability in probabilistic knowledge structures
◮ pks functions summary(), simulate.pks(), . . .
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