Exploring DIF using explanatory IRT models

Jörg-Tobias Kuhn University of Münster

Psychoco 2011 University of Tübingen

Logistic mixed models for DIF

- □ IRT models can be regarded as logistic mixed models (e.g., Adams, Wilson, & Wu, 1997; de Bock & Wilson, 2004; Kamata, 2001)
- \square Formulation of the Rasch model (Rasch, 1960) as a logistic mixed model

Outline

- \square Logistic mixed models for DIF
- ☐ "Student PISA"
- ☐ Discussion

Logistic mixed models for DIF

☐ For Persons *j, ..., J* and items *i, ..., I*, the Rasch model can be specified as

$$Logit(\pi_{ij}) = \sum_{k=1}^{I} \beta_k X_{ki} + u_j$$

With

- $\square Y_{ij} \sim Bernoulli(\pi_{ij})$
- $\Box X_{ki} = 1 \text{ if } k = i, 0 \text{ otherwise}$
- $\Box u_i \sim N(0, \sigma^2_u)$

Logistic mixed models for DIF

☐ DIF is regarded as a group-specific difference in item parameter(s) (while controlling for overall group differences in ability)

Logistic mixed models for DIF

 $\hfill\square$ Specification of a (uniform) DIF model in the logistic mixed model (assuming items as fixed; cf. van den Noortgate & de Boeck, 2005)

$$Logit(\pi_{ijh}) = \sum_{k=1}^{I} \beta_k X_{ki} + \sum_{h=2}^{H} \alpha_h G_{hj} + \sum_{h=2}^{H} \gamma_{kh} G_{hj} X_{ki} + u_j$$

With

- $\ \square \ G_{hj}$ as a group membership indicator,
- \square α_h as a group main effect,

Logistic mixed models for DIF

Logistic mixed models for DIF

 $\hfill\square$ Specification of a (uniform) DIF model in the logistic mixed model (assuming items as random; cf. van den Noortgate & de Boeck, 2005)

$$Logit(\pi_{ijh}) = \beta_0 + r_{0i} + \sum_{h=2}^{H} \alpha_h G_{hj} + \sum_{h=1}^{H} r_{hi} G_{hj} + u_j$$

- $\begin{tabular}{ll} \square G_{hj} as a group membership indicator, \\ \square α_h as a group main effect, \\ \end{tabular}$
- $\hfill \square$ r_{0i} as the random main effect for item i , $r_{0i}{\sim}N(0,\sigma_i^2$)

"Student PISA"

- ☐ Voluntary knowledge test for university students, conducted online by Spiegel magazine
- ☐ 700,000 participants (subsamples analysed here)
- ☐ Each participant received 45 items from 5 knowledge domains: politics, history, economics, culture and nature
- ☐ Question: Can manifest gender differences be attributed to item bias?

Subtest	st	No DIF	DIF				GESAMT
	× 1/2		advantage for men		advantage for women		
	abs.	rel.	abs.	rel	abs.	rel.	
IIIP1	- 6	67%	2	22%	1	11%	400
2 P2	- 6	67%	1	1196	2	22%	(2)
2 P3	5	56%	2	22%	2	22%	W. ren
P4	4	44%	3	33%	2	22%	4
G1	4	44%	3	33%	2	22%	-
G G2	7	78%	1	1196	1	1196	
₫ G3	5	56%	2	22%	2	22%	-
G4	6	67%	1	11%	2	22%	-
- W1	- 5	56%	2	22%	2	22%	4
W2	7	78%	1	11%	1	11%	
8 W3	6	67%	1	1196	2	22%	(f)
₩4	5	56%	1	11%	3	33%	-
K1	- 6	67%	2	22%	1	11%	
5 K2	5	56%	3	33%	1	1196	(2)
3 K3	8	89%	0	0%	Ť	11%	E
K4	5	56%	3	33%	1	11%	-
N1	-5	56%	2	22%	2	22%	
€ N2	5	56%	2	22%	2	22%	(a)
3 N3	4	44%	2	22%	3	33%	Marin .
N4	7	78%	1	1196	1	11%	A.

Thanks for your attention

Discussion

- $\hfill \Box$ Logistic mixed models can be used to test for DIF
- $\hfill\square$ Flexible model specification is possible
- ☐ Estimation of complex logistic mixed using ML: quasi-likelihood prcodures are usually preferred
- ☐ Extension of the framework (Bayesian modeling) feasible