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Put bluntly...
Modelling in psychology is too often concerned about the Emperors’ new
shoelaces,
while he's running around naked,
in the cold,
without a head.

Put differently:

Precision and specific forms of misspecification are sometimes
overemphasised,

other, potentially more substantial, forms of misspecification go undetected
because they are orthogonal to the modelling approach.

| hope we can improve on this by approaching model fit differently.



Model fit — simple, deterministic




Straightforward with simple, deterministic systems and yes / no questions
— prediction errors that can't be explained by instrumentation imply the
model is inadequate.
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Not so straightforward when we know in advance the model is imperfect.
What is ‘wrong’ with this model?
Bad predictions for new data in some conditions.
Interpreted carefully, it offers extremely limited insight into the phenomenon
and makes poor use of data.
Interpreted loosely, it leads to crazy inferences.
Uncertainty about the parameter tells us nothing about the ‘trueness’ of the
parameter.
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Lots of technical concerns, but at
base:
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Lots of technical concerns, but at
base:
How well does the fitted model
predict new data?
How well do alternative models
predict new data?

CURVE-FITTING METHODS
PND THE MESSAGES THEY SEND

“LOOK, IT'5 GROUING
UNCONTROLLABLY""

“I NEED TO CONNECT THESE
0 UNES, BUT MY FIRST IDEA
DIDNT HAVE ENOUGH MATH:

L CLICKED ‘SHOOTH
LNES N EXCEL”

“LUANTED A CURVED
LNE, 50 T MADE ONE
UITH MATH"

“IM SOPHISTICATED, NOT
LIKE THOSE BUMBLING

1AL PEOPLE™

ot S
“USTEN, SCENCE IS HARD.

LooK, 15
TAPERING OFF"

“TM MPKING A
SCATTER PLOT BUT
T DONT LANT TO"
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DATA T COULD D™
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Theory based:

Contrast with competing models — likelihood / evidence, information
criteria, cross validation.
Tells us how much better our model is, but not whether it's actually any
good.

Data based:

Arbitrary ‘standard’ model — e.g. saturated covariance matrix.



Saturated covariance as fit




Take some structuring of data.
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Take some structuring of data.
Estimate covariance matrix.
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Take some structuring of data.
Estimate covariance matrix.
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Estimate covariance matrix.

Compare saturated model with our model — obtain estimate of distance
from saturated model.

If the true model can be represented by some covariance matrix of our
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Take some structuring of data.

Estimate covariance matrix.

Compare saturated model with our model — obtain estimate of distance
from saturated model.

If the true model can be represented by some covariance matrix of our
data structure, we have estimate of distance from true model.

Otherwise, we just have estimate of distance from best linear model given
our arbitrary data structuring.

Expertise Corr
|
05
Learnin
9 0.0

Difficulty ! -1.0



My data structure? Arbitrary!?
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Easy to obtain ‘perfect’ fit wrt saturated covariance.
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Saturated covariance is very free in some regards, very limited in others,
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Easy to obtain ‘perfect’ fit wrt saturated covariance.

Saturated covariance is very free in some regards, very limited in others,
highly dependent on data structure — not a great metric.

Can we do better?
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Alternative approaches:
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Posterior predictive checks:
Decide on quantities of interest
Compare quantities from
empirical data to randomly
generated data from model.
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Posterior predictive checks: Residual checks:

Decide on quantities of interest
Compare quantities from
empirical data to randomly
generated data from model.
Useful but not very general —
requires re-thinking for each
model.
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Posterior predictive checks: Residual checks:
Decide on quantities of interest Visually check residuals from fit
Compare quantities from for patterns, some specific tests.

empirical data to randomly
generated data from model.
Useful but not very general —
requires re-thinking for each
model.
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Posterior predictive checks:

Decide on quantities of interest
Compare quantities from
empirical data to randomly
generated data from model.
Useful but not very general —
requires re-thinking for each
model.

Residuals

Residual checks:

Visually check residuals from fit
for patterns, some specific tests.
Useful, good guide to improving
model, but: non-general, too
much of an art, typically
univariate.

Residuals vs Fitted
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New? idea — residual information criteria




If we knew and fit the true / best model, residuals will be random —
contain no information wrt our data.
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If we knew and fit the true / best model, residuals will be random —
contain no information wrt our data.

Therefore, information that our residuals do contain, can be used to
quantify distance from best possible model.

30+
— 1
20+ Xyl error
> - = yllinear fit
— y2
104 B y2error
- = y2linear fit




How to quantify residual information?

= Would be easy if we knew the true model!



How to quantify residual information?

= Would be easy if we knew the true model!

= Need some general function to detect and quantify structure in data.
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Shannon differential entropy, H, is a scale dependent measure of
information content of a variable — negative expectation of log probability.

Mutual information, /(X, Y) = H(X) + H(Y) — H(X, Y), quantifies
information shared by X and Y.

Conditional entropy, H(X|Y) = H(X) — I(X, Y), quantifies information
unique to X with respect to Y.

H(X) H(Y)

HX,Y)



Implementation
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Mutual information (nonlinear covariance) between residuals, expectations,
and any additional covariates.

Output:
H(Data)
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Mutual information (nonlinear covariance) between residuals, expectations,
and any additional covariates.
Output:

Proportion of residual information able to be predicted from the data —
model ‘wrongness’.

H{Data)

Expertise HiBest Model)

‘Global corr.”

100
Ims

H(Tested Model)
Difficulty

Residuals



Mutual information (nonlinear covariance) between residuals, expectations,
and any additional covariates.
Output:
Proportion of residual information able to be predicted from the data —
model ‘wrongness’.
Where there is shared information between data and residuals — model can
be improved.

H{Data)

HiBest Model)

Expertise
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Estimation difficulties

= Accurate entropy estimates of some ‘ideal’ model, based on the original
data, are not an easy problem, but:
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Accurate entropy estimates of some ‘ideal’ model, based on the original
data, are not an easy problem, but:
We can base estimates from the residuals instead, leveraging the initial
model.
Relative differences are sufficient to provide some guide as to goodness of
fit.
Overfitting can be handled either by overfitting baseline estimates in a
similar fashion, or cross validation.



Some other points...

~ Residual fit measure gets worse as informative covariates are included —
because best possible model gets better.



Residual fit measure gets worse as informative covariates are included —
because best possible model gets better.

Doesn't distinguish mean / variance or directionality — further diagnostics
probably helpful.



Residual fit measure gets worse as informative covariates are included —
because best possible model gets better.

Doesn't distinguish mean / variance or directionality — further diagnostics
probably helpful.

Current plan: R software to provide fit / diagnostics for arbitrary
statistical model.
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Model fit is important if our parameters are to mean anything.
Current metrics are very good in some regards...

But are not great at telling us how close we are to the best model.

Simplifying and quantifying residual analysis, for multivariate systems,
hopefully:
Makes model improvement easier.
Makes it more obvious when results are from poor models.
Helps bridge some of the performance divide between prediction oriented
and explanation oriented approaches.



