
Constrained Poisson Pseudo Maximum
Likelihood Estimation of Structural

Gravity Models

Michael Pfaffermayr

August 15, 2017

Abstract

This paper reconsiders the estimation of structural gravity models, introduc-
ing a constrained projection based Poisson pseudo maximum likelihood esti-
mation procedure (constrained PPML) similar to Heyde and Morton (1993)
and Falocci, Paniccià and Stanghellini (2009). The constrained PPML ap-
proach provides tests and confidence intervals for counterfactual predictions
that are unavailable under the commonly used PPML approach with ex-
porter and importer dummies. The paper establishes the asymptotic distri-
bution of the constrained PPML estimator as well as that of the comparative
static predictions and the implied percentage changes. Monte Carlo simula-
tions provide encouraging results for medium sized samples. The estimation
procedure is applied to a structural gravity model of 59 countries providing
standard errors and confidence intervals of the impact of common language,
contiguity and country borders on bilateral trade and welfare.
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1 Introduction

The analysis of the impact of trade costs on bilateral trade flows, like tariffs or
trade costs related to geographical distance or country borders, is commonly based
on a structural gravity model (see Eaton and Kortum, 2002; Anderson and van
Wincoop, 2003; Bergstrand, Egger and Larch, 2013 and Allen, Arkolakis and Taka-
hashi, 2014).1 The structural gravity model is able to establish consistency of the
aggregated bilateral trade flows with the observed country specific gross produc-
tion and expenditure figures and allows to derive theory consistent comparative
static estimates of counterfactuals that account for general equilibrium effects.

A standard approach in a cross-section is to estimate the gravity model in levels
with fixed exporter and importer effects using Poisson pseudo maximum likelihood
(dummy PPML) as suggested by Santos Silva and Tenreyro (2006). Arvis and
Shepherd (2013) and Fally (2015) point out that under a Poisson specification with
exporter and importer dummies the predicted trade flows add up to production
values and expenditures, respectively, if trade flows are fully observed. Fernandez-
Val and Weidner (2016) show that dummy PPML is among the few non-linear two-
way models whose slope parameters can be estimated without asymptotic bias.
However, dummy PPML is of limited use for the prediction of counterfactuals.
Since in a structural gravity model exogenous changes in trade barriers affect
multilateral resistances, the exporter and importer effects adjust endogenously,
and they change with sample size. So the data generating process (DGP) of the
structural gravity model forms a triangular array ruling out standard bootstrap
approaches of estimating the standard errors of (counterfactual) predictions.

The set-up of Anderson van Wincoop (2003), who use a restricted non-linear
least squares estimator in a log specification, is also applicable in a PPML setting.
In their approach, and under constrained PPML as well, it is assumed that the
system of multilateral resistances holds in expectation at true structural parame-
ters given observed production and expenditures of the countries. This assumption
turns out very useful for both the estimation of structural parameters and the pre-
diction of counterfactuals without further restricting comparative static analysis.

Constrained PPML applies the projection based constrained quasi-likelihood
estimator proposed by Heyde and Morton (1993) and Falocci, Paniccià and Stan-

1Anderson and van Wincoop (2003) envisage an endowment economy with products differ-
entiated by country origin and bilaterally balanced trade flows. Bergstrand, Egger and Larch
(2013) assume that trade is balanced multilaterally, rather than bilaterally, and resort to the
Krugman model to specify the structural gravity equation. However, they emphasize that other
models, e.g., Eaton and Kortum’s (2002) Ricardian model, are observationally equivalent and
thus covered by their specification as well. Allen, Arkulakis and Takahashi (2014) introduce
an axiomatic approach to formulate a general theory consistent structural gravity model that is
compatible with many important theoretical approaches.



ghellini (2009). However in contrast to these contributions, the present approach
explicitly allows the number of constraints to grow without bound as sample size
increases. Su and Judd (2012) demonstrate that such a constrained optimization
approach is equivalent to a nested fixed point procedure that first solves the system
of multilateral resistances in an inner loop and estimates the structural model
parameters in an outer loop, given the multilateral resistance terms (see also Egger
and Staub, 2016). Constrained PPML can also be applied in case of missing trade
flows if selection is based on observables as in Egger, Larch, Staub and Winkelmann
(2011) and comes up with theory consistent estimates and predictions also in this
case.

The proposed constrained PPML estimator for cross-section gravity models has
three main advantages over dummy PPML. First, it allows to establish confidence
intervals for counterfactual predictions that account for changes in multilateral
resistances.2 Second, constrained PPML always comes up with theory consistent
predictions even if a number of trade flows are missing at random. Third, con-
strained PPML performs better than dummy PPML in small and medium sized
samples. Below it is shown, and as well demonstrated by Monte Carlo simulations,
that under dummy PPML the estimated variances of the structural parameters are
affected by the incidental parameter problem and are asymptotically downward bi-
ased, while those derived under constrained PPML are not.

This paper derives the asymptotic distribution of the constrained PPML es-
timator for structural gravity models and, using the delta method, that of com-
parative static results. Monte Carlo simulation results show that the constrained
projection estimator works reasonably well and comes up with correct inference in
medium sized cross-sections. To illustrate the usefulness of the constrained PPML
estimator, it is applied to assess impact of a common official language, contiguity
and country borders on bilateral trade flows and welfare quantitatively.

2 The structural cross-section gravity model

Several approaches are available to estimate structural gravity models. Following
Santos Silva and Tenreyro (2006), a popular choice is to analyze bilateral trade
flows in levels rather than in logs using PPML. Formally, in a cross-section of
C countries the DGP of the structural gravity model in levels generates bilateral

2Actually, for solving the system of trade resistances one may use the dummy PPML estimates
of the structural parameters. Since these estimates are consistent, the proposed confidence
intervals can be calculated without implementing the more complicated, iterative estimation
procedure of constrained PPML.
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trade flows as

xij,C = YW t
1−σ
ij κi,CΠσ−1

i,C θj,CP
σ−1
j,C ηij = YW e

z′ijα+βi,C(α)+γj,C(α)ηij. (1)

Bilateral trade flows and the implicit solutions of the system of multilateral resis-
tances depend on trade frictions modelled as t1−σij = ez

′
ijα. κi,C denotes the share

of country i in world production YW , while θj,C refers to country j’s expenditure
as share of YW . In general, gross production and expenditures of a country may
differ from each other (κi,C 6= θj,C) so that trade may not be balanced at the
country level. The disturbances ηij are assumed to be independently distributed
with E[ηij|zij] = 1, but possibly heteroskedastic. Multilateral multilateral re-
sistances enter the model in normalized form as eβi,C(α) = κi,CΠi,C(α)σ−1 and
eγj,C(α) = θj,CPj,C(α)σ−1, respectively. This notation emphasizes that Πi,C(α) and
Pj,C(α) are not parameters to be estimated, rather they depend on the parameter
vector α, referring to barriers of bilateral trade, and on the number of countries in
the sample.

For estimation, the structural gravity model can be reformulated with additive
disturbances:

sij,C = mij(ϑC) + εij, εij = mij(ϑC) (ηij − 1) , (2)

where mij(ϑC) = ez
′
ijα+βi,C(α)+γj,C(α) and ϑC = [α′, β′C(α), γ′C(α)]′ to abbreviate

notation. Santos Silva and Windmeijer (1997) show that the multiplicative and
additive error Poisson models are observationally equivalent if the explanatory
variables are exogenous. Both lead to the same estimators as the estimation pro-
cedure is based on a conditional mean assumptions only. Under IV-estimation,
this equivalence breaks down, however.

For the estimation of structural gravity models the econometric specification
needs to be precise on the stochastic properties of the system of multilateral re-
sistances. Following Anderson and van Wincoop (2003, p. 179, eq. 21), Anderson
and Yotov (2010, pp. 2260, eq. 5-6) and Baier and Bergstrand (2009, p. 79, eq.
8) a deterministic approach assumes that the system of multilateral resistances
holds in expectation with the countries’ gross production and expenditures taken
as given and treated as non-stochastic. This assumption is justified if gross produc-
tion, expenditures and aggregate country specific exports to and imports from the
world come from different sources (e.g. UNIDO’s Industrial Statistics Database
or OECD’s STAN database) than bilateral trade flow data. These aggregates are
typically collected in country specific censuses that are unrelated to the sources of
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bilateral trade flow data.3

κi,C = E

[
C∑
j=1

mij(ϑC) + εij

]
=

C∑
j=1

mij(ϑC) (3)

θj,C = E

[
C∑
i=1

mij(ϑC) + εij

]
=

C∑
i=1

mij(ϑC) (4)

In this setting observed trade flows do not add-up to gross production and ex-
penditures, especially if domestic within country trade is derived from aggregated
country specific data (see Appendix H for details).

In contrast, Bergstrand, Egger, Larch (2013, p. 113, eq. 10) and Egger and
Nigai (2015, p. 88, eq. 2.3 and 3.2) suggest a stochastic specification, establishing
the system of multilateral resistances as

κi,C =
C∑
j=1

sij,C =
C∑
j=1

mij(ϑC) + εij (5)

θj,C =
C∑
i=1

sij,C =
C∑
i=1

mij(ϑC) + εij. (6)

At given gross production and expenditure figures this assumption implies restric-
tions on the distribution of the disturbances, namely

∑C
i=1 εij =

∑C
j=1 εij = 0.

This is the relevant case if domestic trade flows are derived as residuals, sii,C =

κi,C −
∑C

j=1,j 6=i sij,C , or if trade flows are calibrated to the system of multilateral
resistances ex-ante such as in WIOD. To sum-up, the econometric specification
of the structural gravity as laid out above covers both cases when imposing the
adding-up constraints (3) and (4), and in the stochastic case additionally the re-
strictions on the disturbances.

In the absence of any trade barriers (α = 0) it holds that Πi,C(0) = 1 and
Pj,C(0) = 1, while eβi,C(α) = κi,C and eγj,C(α) = θj,C . Since the solution of the sys-
tem of multilateral resistances is unique up to a constant, without loss of generality
βC,C(α) is normalized to 0. For estimation, trade flows are further normalized by

world expenditures, i.e., sij,C = xij,C/YW so that
∑C

i=1

∑C
j=1 sij,C = 1 (see Allen,

Arkolakis and Takahashi, 2014). The normalization implies that there is no con-
stant in the model. Actually, without further structural assumptions on the DGP,
e.g. on endowments in case of an endowment model or on labor markets and tech-

3Actually, trade flow data are based on international transactions of goods, while gross pro-
duction, expenditures and aggregate exports and imports come from censuses that allocate these
figures to industries based on the main activities of firms.
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nology (Krugman, 1979), YW remains unspecified. As the countries’ production
and expenditures are assumed to be exogenously given, YW is given as well and it
is assumed to grow at the rate of the number of country pairs, C2. So without loss
of generality YW may be written as cWC

2 for some constant cW . Note, the data
generating process for sij,C depends on the number of countries and thus forms a
triangular array as indicated by the index C.

Furthermore, the present approach allows some trade flows to be unobserved
due to randomly missing data, while all of them enter the system of multilateral
resistances. Specifically, under the assumption of selection on observables (see
e.g. Egger, Larch, Staub and Winkelmann, 2011) the structural gravity model
with missing trade flows may be seen as the second (outcome) part of a two-part
model. Let V denote the corresponding selection matrix, which is derived from
the identity matrix by setting the diagonal elements to 1 if a trade flow is observed
and 0 otherwise. In matrix form, the model can be then compactly formulated as

V sC = V (m(ϑC) + ε) (7)

D′m(ϑC)− θC = 0,

where sC = (s11,C , ..., sCC,C)′, θC = (κ1,C , ...., κC−1,C , θ1,C , ..., θC,C)′, m(ϑC) =
(m11(α), ...,mCC(α))′. Exporter and importer dummies are collected in the de-
sign matrix D = [Dx, Dm] and W = [Z,D] contains all right hand side variables
including exporter and importer dummies.4

3 Dummy PPML and constrained PPML

In the following ϑC,0 = [α′0, φC(α0)′]′ with φC(α0) = [β′C(α0), γ′C(α0)]′ denotes the
true parameter vector of the population model with dimension (K + 2C − 1× 1).
The corresponding constrained estimates are denoted by a hat. Constrained PPML
uses the restricted Poisson log-likelihood:

lnLC(ϑC |V ) =
YW
C2

C∑
j=1

C∑
i=1

vij(sij,C(ln (mij(ϑC)) + lnYW )−mij(ϑC))

+λ′ (D′m(ϑC)− θC) , (8)

where λ denotes the (2C − 1× 1) vector of Lagrange multipliers. Conditional on
V , the score of the restricted Poisson pseudo-likelihood is given as (ignoring the

4Principally, zero trade flows can be accounted for by adjusting the system of trade resistances.
For this define the selection matrix S, which is derived from the identity matrix by skipping all
rows referring to zero trade flows. Then, the system of trade resistances can be written as
D′S′Sm(ϑC)− θC = 0.
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scaling factor YW
C2 which does not depend on α)

∂ lnLC(ϑC |V )

∂α
= Z ′V (sC −m(ϑC)) + Z ′M(ϑC)Dλ (9)

∂ lnLC(ϑC |V )

∂φC
= D′V (sC −m(ϑC)) +D′M(ϑC)Dλ (10)

∂ lnLC(ϑC |V )

∂λ
= D′m(ϑC)− θC , (11)

since
∂D′m(ϑC)− θC

∂ϑC
= W ′M(ϑC)D,

with M(ϑC) = diag(m(ϑC)). For the the unconstrained dummy PPML the score
is given as

∂ lnLU(ϑC |V )

∂α
= Z ′V (sC −m(ϑC)) (12)

∂ lnLU(ϑC |V )

∂φC
= D′V (sC −m(ϑC)) (13)

with corresponding estimator by ϑC .
Arvis and Shepherd (2013) and Fally (2015) show that the PPML estimation

procedure automatically guarantees that the predicted trade flows add-up to the
trading countries’ production and expenditures, respectively, if the model includes
exporter and importer fixed effects and all C2-country pair observations are used
for estimation (V = IC2 , in (13)). Under missing trade flows this property of
PPML is lost, however.

Constrained PPML implies that predicted bilateral trade flows always add up to
exporter production value and importer expenditures even if some trade flows are
missing, since the constraint (11) is imposed. In contrast, from (13) it follows that
under the dummy PPML D′V m(ϑC) = θC + (D′V m(ϑC,0)− θC) + D′ε. Thereby,
the assumed true DGP, sC = m(ϑC,0) + ε and D′m(ϑC,0) = θC , has been inserted.
Therefore, it holds that D′V m(ϑC) 6= θC even at D′ε = 0, if some non-zero trade
flows remain unobserved.

If data are fully observable and generated such that D′sC = θC , e.g., in GTAP
or WIOD, (10) implies that λ = 0 and the score reduces to

∂ lnLC(α, φC(α))

∂α
= Z ′(sC −m(α, φC(α)), (14)

where φC(α) solves the system of multilateral resistances D′m(α, φC(α))−θC = 0.
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In this scenario, at true parameters the score of constrained PPML is given as
W ′ε = (Z,D)′ε and the restriction D′ε = 0. Hence, the variance-covariance matrix
of the score is singular and disturbances will not be independent by construction.
The derivation of asymptotic distribution of α̂ thus has to take account of this
restriction and the implied pattern of dependence of the disturbances.

Following Falocci, Paniccià and Stanghellini (2009)5 and Heyde and Morton
(1993), constrained PPML estimation can be designed as an iterative projection
based estimation procedure that solves the constrained ML-maximization problem
defined in (9)-(11).

Proposition 1 (Constrained PPML): Assume iteration r yields ϑ̂C,r and define

F̂r = D′M(ϑ̂C,r)W

Ĝr = W ′VM(ϑ̂C,r)W,

where Ĝr is non-singular. Iteration r + 1 obtains

ϑ̂C,r+1 = ϑ̂C,r +

(
Ĝ−1
r − Ĝ−1

r F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1

F̂rĜ
−1
r

)
W ′V

(
sC −m(ϑ̂C,r)

)
+ Ĝ−1

r F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1 (
θC −D′m(ϑ̂C,r)

)
.

Proof. See the Appendix C.

Remark 1 Upon convergence, at ϑ̂C,r+1 = ϑ̂C,r, the constrained PPML estimator
guarantees the adding-up constraint to hold even in case of missing trade flows,

since in this case 0 = F̂r

(
ϑ̂C,r+1 − ϑ̂C,r

)
= θC −D′m(ϑ̂C,r). However, it does not

force the estimated score to zero. Rather, upon convergence the estimator leads to

Ĝ−1
r

(
IK+2C−1 − F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1

F̂rĜ
−1
r

)(
W ′V

(
sC −m(ϑ̂C,r)

))
= 0.

where the involved protection matrix is of rank K.

This estimator is easy to implement and may use the parameter estimates of the
dummy PPML estimator as starting values. Su and Judd (2012) demonstrate that
this constrained optimization approach yields the same estimates as the nested
fixed-point procedure, which solves the system of multilateral resistances in an
inner loop and estimates the structural model parameters at given multilateral
resistance parameters in the outer loop.

5These authors develop a constrained iterative maximum likelihood to estimate a log-linear
gravity model of tourism flows under accounting constraints.
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Based on the restricted maximum likelihood (8) it is possible to derive the
limit distribution of the constrained PPML estimate α̂ that fully respects the
general equilibrium restrictions and accounts for the functional dependence of the
multilateral resistance terms on the slope parameters α. The asymptotic variance-
covariance of the constrained PPML estimator differs from that of the dummy
PPML estimator under the assumption that the system of multilateral resistances
holds in expectation. Specifically, Heyde and Morton (1993) demonstrate that in a
setting without incidental parameters the asymptotic distribution of the projection
based estimator is singular normal (see their Corollary, p. 758).

The present approach is more general, since it establishes the limit distribution
of α̂ by projecting out the importer and exporter effects similar to Fernandez-
Val and Weidner (2016) and allowing the number of constraints, 2C − 1, to grow
without limit. The set of assumptions to establish consistency of α̂ and its limit
distribution is stated in detail in Appendix A. Here, it suffices to mention that
the assumptions maintain that mij(α) and θi,C converge to zero at rates C2 and
C, respectively, as the trade flows are normalized by world production so that∑C

j=1

∑C
i=1 sij,C = 1. This is guaranteed by assuming that expected trade flows

are bounded from above and below, i.e., ca/C
2 < mij(α, φC(α)) < (1− ca)/C2 for

a constant ca < 0.5, an assumptions similar to Condition S made by Berry, Lin-
ton and Pakes (2007) in the analysis of (mixed) logit estimators for market share
models. εij is assumed to be independently distributed with variance σ2

ij/C
4.6

Naturally, the derivation of the asymptotic distribution of the constrained PPML
estimator has to account for that normalization. Lastly, one has to assume that un-
der the normalization βC,C = 0 the solution of the system of multilateral resistances
is unique (which is demonstrated Appendix B), the absence of multicollinearity in
the explanatory variables and the existence of several limiting matrices.

Proposition 2 Under the set of assumptions specified in Appendix A it holds that

(i) Both dummy and constrained PPML estimates of α0 are consistent, i.e. α
P→

α0 and α̂
P→ α0.

(ii) C(α̂− α0)
d→ N

(
0, B−1

0 A0ΩεA
′
0B
−1
0

)
,

where Ωε = diag(σ2
ij), A0ΩεA

′
0 = p limC→∞

1
C2A(α∗)εε′A(α∗)′, B0 = p limC→∞B(α∗)

6This assumption is for convenience. Actually, it is sufficient to assume that E[ε2ij ] = O(C−4).
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with α∗ lying in between α̂ and α0, element by element, and

M(α) = diag(mij(α, φC(α)))

G(α) = W ′VM(α)W

F (α) = D′M(α)W

A(α) = C2 [IK , 0K×2C−1]
[
I − F (α)′

(
F (α)G(α)−1F (α)′

)−1
F (α)G(α)−1

]
W ′V

B(α) = Z ′V
[
M(α)−M(α)D(D′M(α)D)−1D′M(α)

]
Z.

(iii) For estimation one uses B̂ = B(α̂)
p→ B0 and 1

C2A(α̂)diag(ε̂ε̂′)A(α̂)′
p→

A0ΩεA
′
0.

Proof. See the Appendices D and E.

The covariance matrix of α̂ is easy to calculate, once the results of the iterative esti-
mation procedure as outlined in Proposition 1 are available. Upon convergence con-
strained PPML delivers the estimates of M(α̂), F (α̂) and G(α̂). Plugging in the es-

timated residuals ε̂ one can use ̂V ar (α̂) = C2−1
C2 B(α̂)

(
1
C4A(α̂) diag(ε̂ε̂′)A(α̂)′)B(α̂)

for inference in finite samples. Clearly, plugging in the consistent dummy PPML-
estimators α does the job as well.

Remark 2 Both the dummy and the constrained PPML estimates of α0 are con-
sistent and asymptotically unbiased (see also the no bias result of Fernandez-Val
and Weidner, 2016, for dummy Poisson ML-estimators).7 However, the limit dis-
tribution of the dummy PPML estimator α is different, if some trade flows are
missing and the DGP actually obeys the restrictions imposed by the system of mul-
tilateral resistances. The reason is that the dummy PPML estimator neglects the
functional dependence of the multilateral resistance terms on structural parameters
and that the predicted trade flows do not add-up to production and expenditures in
case of missing trade flows. In Appendix G it is shown that the limit distribution
of the dummy PPML estimator is based on

B(α) = Z ′V
[
M(α)−M(α)D(D′VM(α)D)−1D′VM(α))

]
V Z, (15)

with φC(α) solving D′V (sC − m(α, φC(α))) = 0 and M(α) = M(α, φC(α)). The
limiting variance of the score of dummy PPML A0ΩεA

′
0 makes use of

A(α) = C2Z ′
[
IC2 −M(α)V D(D′VM(α)D)−1D′

]
V. (16)

7Proofs of the following remarks are given in Appendix G.
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In contrast, under constrained PPML φC(α) always solves D′(sC−m(α, φC(α))) =
0 and it follows (simplifying the expressions in Proposition 2) that

B(α) = Z ′V
[
M(α)−M(α)D(D′M(α)D)−1D′M(α)

]
Z. (17)

A(α) = C2Z ′
[
IC2 −M(α)D

(
F (α)G(α)−1F (α)′

)−1
F (α)G(α)−1W ′

]
V (18)

This result illustrates that the difference in the limit distribution of α̂ and α arises
from the usage of different projection matrices. While the dummy PPML estimator
applies IC2 −M(α)V D(D′VM(α)D)−1D′ to project out the exporter and importer
dummies, the constrained PPML estimator applies a different projection that does
not involve the selection matrix V and that forces the estimated parameters of the
exporter and importer dummies to obey the restrictions of the system of multilat-
eral resistances without error.

Constrained and dummy PPML lead to the same limit distribution of the esti-
mated structural parameters under fully observed trade flows. In fact, in this case
φC(α) = φC(α̂) solving D′(sC −m(α̂, φC(α̂))) = 0 (see Appendix G for details on
the derivation) and in both cases

B(α) = Z ′
[
M(α)−M(α)D(D′M(α)D)−1D′M(α)

]
Z, (19)

and
A(α) = C2Z ′

[
IC2 −M(α)D(D′M(α)D)−1D′

]
. (20)

This finding mirrors the well known result of Arvis and Shepherd (2013) and Fally
(2015).

Remark 3 An important difference between the constrained PPML and the dummy
PPML arises in the estimation of V ar (α̂) and V ar (α) . Since dummy PPML re-
quires the estimation of 2C− 1 parameters of the importer and exporter dummies,
̂V ar (α) is asymptotically downward biased of order C−1. Constrained PPML does

not exhibit this incidental parameter problem as the exporter and importer dum-
mies are treated as functions of α. (See Chesher and Jewitt (1987), Cribari–Neto,
Ferrari and Cordeiro (2000), and Imbens and Kolesar (2016)). Appendix G pro-
vides a proof for the case of fully observed trade flows). Monte Carlo evidence
shown below confirms this finding.

Remark 4 If trade flows are fully observed and data are generated such that
D′sC = θC , as in GTAP or WIOD, there is the additional implicit restriction
D′ε = 0. Moreover, it immediately follows that the score at true parameters re-
duces to C2Z ′ε. By construction the disturbances will not be independent in this
case. More importantly, the variance-covariance matrix of their scores is singular
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and the limit distribution of ᾱ and α̂, derived above is inappropriate. To account
for this singularity a simple specification would be to assume that C2εij is inde-

pendently distributed as (0, σ2
ij) for i 6= j and i 6= C, while εii = −

∑C
j=1,j 6=i εij for

i < C and εCj = −
∑C

j=1,j 6=C εCj, j = 1, ..., C. In this case, data can be partitioned
so that ε = (ε′R, ε

′
U)′, where εR includes εii, i = 1, .., C − 1 and εCj, j = 1, .., C,

while εU comprises the remaining unconstrained disturbances. The matrices D and
Z are partitioned in the same way. Thereby, DR is an invertible 2C − 1× 2C − 1
matrix, while DU has dimension 2C − 1× (C − 1)2. Then one can decompose the
restrictions accordingly as

D′ε = D′RεR +D′UεU = 0

εR = −D′−1
R D′UεU , (21)

and apply Proposition 2 with A(α) = C2
[
Z ′U − ZRD′−1

R D′U
]

and Ωε = E[εUε
′
U ].

Remark 5 Instead of assuming heteroskedastic disturbances, one may use the
clustering approach of Cameron, Gelbach and Miller (2011) to account for de-
pendence of the disturbances within exporters and importers, e.g., induced by un-
observed random exporter and importer effects (see also Egger and Tarlea, 2015,
for an application in a panel framework to gravity models). In this case, one de-
fines selector matrices that take the value of 1 if any two observations belong to the
same cluster of exporting or importing countries, respectively. Using Dx to select
the exporter specific and Dm the importer specific cluster and denoting the Hadar-
mard element-wise product by ◦, one obtains under this more general assumption
on the disturbances

A0ΩεA0 = p lim
C→∞

1
C3A(α∗) (εε′ ◦ (DxD

′
x +DmD

′
m − IC2))A(α∗). (22)

The variance-covariance matrix of the estimated parameters can again be estimated
consistently, by plugging in the estimated residuals of constrained PPML for dis-
turbances ε. However, the rate of convergence is lower and one needs to normalize
α̂− α0 by C

1
2 rather than by C (see Cameron, Gelbach and Miller, 2011, p. 247-

248).

4 Counterfactual predictions

The comparative static analysis is based on predicted trade flows obtained under
counterfactual changes of the explanatory variables. This section concentrates on
conditional general equilibrium effects treating production and expenditure shares
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as fixed (see Larch and Yotov, 2016).8 The derivation of the asymptotic distribu-
tion of the estimated counterfactual trade flows uses selection matrices that pick
out a finite number of countries by skipping the corresponding rows of the non-
selected ones from IC2 or generate means for a finite set of trade flows of groups
of countries.

Proposition 3 (Counterfactual prediction) The set of assumptions for this propo-
sition is given in Appendix A. Let Vα = B−1

0 A0ΩεA
′
0B
−1
0 .

(i) Define the normalized (s×C2) selection matrix S, s < K, so that SM(α0, Z)
possesses typical non-zero elements C2mij(α0,zij) and let

Γc0 = lim
C→∞

SM(α0, Z
c)[IC2 −D (D′M(α0, Z

c)D)
−1
D′M(α0, Z

c)]Zc

Γ0 = lim
C→∞

SM(α0, Z)[IC2 −D (D′M(α0, Z)D)
−1
D′M(α0, Z)]Z.

Then, it follows that

CS(m(α̂, Zc)−m(α0, Z
c))

d→ N(0,Γc0VαΓc′0 )

CS(m(α̂, Z)−m(α0, Z))
d→ N(0,Γ0VαΓ′0)

CS∆m(α̂, Zc)
d→ N(0, (Γc − Γ)Vα (Γc0 − Γ0)′)

and Γ̂c − Γc0 = op(1) and Γ̂− Γ0 = op(1).

(ii) Define the (r × C2) selection matrix R, r ≤ K, so that RM(α0, Z)−1 has
non-zero elements mij(α0,zij)

−1 and let

Υc
0 = lim

C→∞
RM(α0, Z)−1M(α0, Z

c)[IC2 −D (D′M(α0, Z
c)D)

−1
D′M(α0, Z

c)]Zc

Υ0 = lim
C→∞

R[IC2 −D (D′M(α0, Z)D)
−1
D′M(α0, Z)]Z.

It follows that

CRM(α̂, Z)−1m(α̂, Zc)
d→ N(0, (Υc

0 −Υ0)Vα (Υc
0 −Υ0)′)

and
(

Υ̂c −Υc
0

)
= op(1) and

(
Υ̂−Υ0

)
= op(1).

Proof. See Appendix F.

8Counterfactual predictions of full (endowment) general equilibrium effects with endogenously
adjusting production and expenditures can be derived in a similar way.
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Remark 6 It has to be emphasized that this procedure only needs consistent es-
timates of the structural parameters α, that may also come from dummy PPML.
However, V̂α has to be calculated according to Proposition 2 to avoid asymptotic
bias of the standard errors of the counterfactual predictions.

5 Monte Carlo simulations

The Monte Carlo simulation experiments assesse the quality of the asymptotic
results of Propositions 2 and 3 as an approximation in medium sized cross-sections.
The simulations are based on a simplified structural gravity model that is specified
as

sij,C = e−0.4zij,1−0.75zij,2+βi,C+γj,Cηij

κi,C =
C∑
j=1

e−0.4zij,1−0.75zij,2+βi,C+γj,C

θj,C =
C∑
i=1

e−0.4zij,1−0.75zij,2+βi,C+γj,C ,

where C2ηij is iid N(1, σ2) and η enters in multiplicative form. 9 The explana-
tory variables are taken from CEPII’s database. zij,1 is a dummy for a common
official language. The second explanatory variable, zij,2, refers to log weighted
distance. zij,1 is zero for intra-country trade flows (i = j) and both explanatory
variables remain fixed in repeated samples. Production and expenditure shares
come from GTAP.10 Data are sorted by country size so that the sample always
includes the C largest ones. The multilateral resistance terms, βi,C and γj,C , are
derived as solutions to the system of multilateral resistances at true parameter
values α0 = (−0.4,−0.75). Thus the system of multilateral resistances holds in
expectation, but not for the generated trade flows which are subject to measure-
ment error. This design guarantees that the E[sij,C ] is uniformly bounded. The
normality assumption on εij violates the uniform boundedness assumption and
may produce negative realizations of sij,C . In all the Monte Carlo runs this did not
occur, however.

The Monte Carlo experiments consider C ∈ {40, 60} and set σ = 20
C2 to account

for the assumption that σ2 decreases with sample size (Assumption Part I.3). Un-

9Assuming non-normal disturbances, where C2ηij = σ
(

1 +
ζij−10

20

)
, ζij being iid χ2(10),

yields similar results, which are available upon request.
10For simplicity GDP shares are used for the simulations. For the Monte Carlo experiments

this choice is irrelevant and does distort the results.
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der these assumptions the standard errors of the estimated parameters are similar
to those found in the literature. Furthermore, in a set of experiments 50 percent
of the trade flows remain unobserved, while all observations on the explanatory
variables and the production and expenditure shares are available. The third set
of experiments considers the case, where only domestic trade flows are missing.

Table 1: Monte Carlo simulation results I: Simulated standard errors, estimated
standard errors and 95% coverage rates of structural parameters under constrained
and dummy PPML

Countries Missings Sim. std. Est. std. 95% Coverage rate

α1 α2 α1 α2 α1 α2

Constrained PPML
40 0 0.0117 0.0030 0.0110 0.0028 0.938 0.939
40 50% 0.0147 0.0043 0.0136 0.0040 0.924 0.919
40 domestic 0.0089 0.0019 0.0087 0.0018 0.939 0.944

60 0 0.0048 0.0013 0.0046 0.0012 0.944 0.940
60 50% 0.0078 0.0020 0.0070 0.0018 0.924 0.929
60 domestic 0.0037 0.0008 0.0036 0.0008 0.941 0.945

Dummy PPML
40 0 0.0117 0.0030 0.0072 0.0014 0.778 0.632
40 50% 0.0137 0.0039 0.0088 0.0017 0.788 0.619
40 domestic 0.0112 0.0035 0.0087 0.0023 0.872 0.801

60 0 0.0048 0.0013 0.0030 0.0006 0.780 0.646
60 50% 0.0069 0.0018 0.0035 0.0008 0.670 0.578
60 domestic 0.0046 0.0014 0.0035 0.0009 0.865 0.796

Notes: 5000 Monte Carlo runs. Coverage rate refers to a nominal 95 percent confidence

interval using the normal distribution.

Both the dummy and the constrained PPML estimators of the structural parame-
ters are virtually unbiased in all considered experiments with negligible deviations
from their true values and the results are thus not reported. Table 1 exhibits
the simulated standard errors of the parameter estimates of α1 and α2 and their
estimated counterparts for the constrained and the dummy PPML. Thereby, the
simulated standard errors are calculated as the standard deviation of the corre-
sponding point estimates in 5000 Monte Carlo runs. The last two columns of Table
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1 display the coverage rates of 95%-confidence intervals to check the validity of the
asymptotic distribution of α̂ as derived in Proposition 2 in finite samples. For con-
strained PPML the estimated standard errors are quite close to their simulated
counterparts in almost all experiments and in most of cases the simulated coverage
rates come close to their nominal values. Considering the uncertainty induced by
the Monte Carlo simulation, a 99% confidence interval of the simulated coverage
rates is [0.942, 0.958]. The simulated coverage rates are below the lower bound of
this interval by a small margin, especially at C = 40 and in case of 50% missing
values.

In contrast to constrained PPML but in line with the findings in Remark 3,
the standard errors of the structural parameters estimated by dummy PPML are
severely downward biased. The bias calculations given in Appendix G show that
under homoskedastic disturbances η, as a assumed in the Monte Carlo design, the
proportionate bias is driven by the leverage only. Assuming that the true parame-
ters are known, the lower and the upper bound of the proportionate bias are calcu-
lated as [−6.13, 0.00] percentage points for the standard error of α̂1 estimated by
constrained PPML. Under dummy PPML this interval widens to [−74.30,−0.77]
percentage points. The Monte Carlo simulations confirm this finding. The cor-
responding simulated coverage ratios reported in Table 1 are substantially and
significantly below their the nominal value of 95%. For example, for C = 40 and
fully observed trade flows these coverage rates amount to 0.778 and 0.632 for α1

and α2, respectively. With the data at hand the leverage and, therefore, the lower
bound of the bias of dummy PPML increases only marginally at C = 60.

The size discrepancy plot in Figure 1 for C = 60 is based on Davidson and
MacKinnon (1998) and displays the difference between the actual and nominal
size of a t-test for H0 : α1 = −0.4 and H0 : α2 = −0.75 over a range of significance
levels. Formally, the size discrepancy curve is derived from the empirical cumula-
tive distribution function of the p-values pr defined as F (q) = 1

R

∑R
r=1 I(pr ≤ q),

where R is the number of Monte Carlo replications. Figure 1 exhibits the plots of
F (q)− q against q under the assumption that H0 actually holds. In addition, the
Kolmogorov and Smirnov test shows whether F (q) − q differs significantly from
0 (Davidson and MacKinnon 1998, p. 11) and the size of the t-tests is distorted
(see the Kl/Ku-band in Figure 1). The results indicate that in case of fully ob-
served trade flows or only domestic trade flows missing the t-tests based on the
constrained PPML are correctly sized and located within the 1% Kolmogorov and
Smirnov band. If 50% of trade flows are missing the t-tests are marginally over-
sized at nominal test size above 0.075% indicating that the sample should include
40 countries or more to obtain properly sized t-tests.

In contrast, the t-tests based on the dummy PPML are considerable oversized
in all experiments. As shown above the reason is that the estimated variances are
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prone to asymptotic bias induced by the incidental parameter problem. For ex-
ample, for C = 60 the actual size of a t-test for α1 based on the dummy PPML
amounts to 0.22 under fully observed trade flows and to 0.34 in case of 50 percent
missing trade flows, if a nominal significance of 0.05 assumed. The size distortion
of t-tests based on the dummy PPML is more pronounced if 50% of trade flows
are missing, but turn out smaller if only domestic trade flows are missing.

Table 2: Monte Carlo simulation results II: 95% coverage rates counterfactual
changes under constrained PPML

Countries Missings Country pairs

1,1 1,2 2,1 2,2

Absolute Change
40 0 0.940 0.939 0.937 0.926
40 50% 0.923 0.925 0.924 0.910
40 domestic 0.945 0.940 0.941 0.938

60 0 0.931 0.937 0.944 0.932
60 50% 0.907 0.911 0.919 0.906
60 domestic 0.927 0.930 0.936 0.924

Relative Change
40 0 0.950 0.937 0.948 0.951
40 50% 0.939 0.922 0.936 0.939
40 domestic 0.952 0.938 0.948 0.953

60 0 0.950 0.954 0.951 0.957
60 50% 0.933 0.937 0.933 0.941
60 domestic 0.943 0.951 0.948 0.949

Notes: 5000 Monte Carlo runs. The coverage rate refers to a nominal 95 percent

confidence interval using the normal distribution.

Table 2 displays the results of the estimated impact when the dummy for
common official language is counterfactually set to 0 and constrained PPML is
used.11 The reported figures in the Table 2 refer to the change in trade flows
within and between the smallest two countries.12 Across the board, the estimated

11Detailed simulation results for dummy PPML are available upon request.
12These country pairs exhibit different languages. So the common language dummy has been

set to 1 in the data base to allow for both direct and indirect effects of the counterfactual change.
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standard errors are well in line with the simulated ones. For absolute changes the
simulated coverage rates are slightly below their nominal values, while for relative
changes and C = 60 the simulated coverage rates are located always in the 99%
confidence interval under fully observed trade flows or in case of missing domestic
trade flows. However, the deviations of the coverage rates from their nominal
values are somewhat larger with 50% missing values.

Table 3: Monte Carlo simulation results III: 95% coverage rates of
counterfactual changes with restricted observed trade flows

Countries Country pairs

1,1 1,2 2,1 2,2

Absolute Change
40 0.954 0.945 0.941 0.936
60 0.922 0.940 0.941 0.919

Relative Change
40 0.950 0.946 0.947 0.952
60 0.943 0.942 0.943 0.943

Notes: 5000 Monte Carlo runs. The coverage rate refers to a nominal

95 percent confidence interval using the normal distribution.

Table 3 reports simulated coverage ratios of the 95%-confidence intervals for
the case when the observed trade flows add-up to given exporters’ production and
importers’ expenditures and the variance-covariance matrix of the disturbances is
singular. Trade flows and the corresponding disturbances are generated according
to the specification in (21). To avoid negative trade flows, especially domestic
ones in small countries, disturbances are specified as distributed independently
truncated normal so that the bounded support assumption of the disturbances
is fulfilled. This reduces the variance of disturbances and the standard errors of
estimated parameters. In order to obtain realistic t-values the log distance has been
scaled by a factor 100. Results show that coverage rates are slightly below their
nominal values, especially at C = 60, in case of absolute changes. For relative
changes the simulated coverage rates always lie in the 99%-confidence interval
[0.942, 0.958]. The last row of graphs in Figure 1 indicates that t-test based on
constrained PPML are correctly sized in this setting, while dummy PPML leads
to oversized tests.

Overall, the simulation results show that the limit distribution of the con-
strained PPML comes up with approximately correct standard errors and coverage
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rates of the 95% confidence intervals as well as correctly sized tests if the system of
multilateral resistances holds in expectation. Also the estimated standard errors
as derived by the delta method in Proposition 3 allow proper inference and provide
approximately correct confidence intervals for comparative static experiments in
reasonably large cross-sections.

6 The impact of common language, contiguity

and country borders on bilateral trade flows

As an illustration of the constrained PPML estimation procedure this section con-
siders the impact of common language, contiguity and national borders on interna-
tional trade and welfare following the approach of Costinot and Rodŕıguez-Clare
(2014). The sample comprises 59 countries and refers to the year 2006. Data
on goods trade and compatible figures on total manufacturing production, ag-
gregate exports and imports are taken from OECD’s Stan database. The latter
data are augmented by information from CEPII’s Trade, Production and Bilateral
Protection (TradeProd) database as well as aggregated Comtrade data to impute
a few missing data points on total manufacturing production, aggregate exports
or imports.13 Then all production and expenditure data for the 59 countries are
available. Details on the calculation of domestic trade as well as on the corrections
for trade with the rest of the world and trade imbalances are given in Appendix
H.

For the analysis of the impact of common language and contiguity the missing
trade flows as well as domestic trade are treated as true missings, but are implicitly
predicted by constrained PPML. The estimation of border effects includes data on
domestic trade flows that have been calculated as residuals from aggregate pro-
duction exports and imports setting 48 missing bilateral trade flows to zero so that
the data fulfill the above mentioned aggregation restrictions of the disturbances.14

In both cases trade flows, production and expenditures are normalized by world
output and sum to 1.

Lastly, the measures of population weighted distance and the dummies for
contiguity, official common language, colony and common colonizer are from Mayer
and Zignago (2011). All explanatory variables are defined as trade barriers so that
all their parameters exhibit negative signs. For example, the variable border takes
the value 1 if exporter and importer countries are different, while it is 0 for within
country flows.

13Details on the interpolation procedure are available upon request.
14Setting these values to missings rather than to 0 yields nearly identical estimation results.

19



Table 4: Parameter estimates, dummy and constrained PPML

Dummy PPML Constrained PPML

α t-value α t-value

(A) Without domestic trade flows
Country border - - - -
No common official language −0.25 −3.34∗∗∗ −0.40 −4.99∗∗∗

No contiguity −0.27 −4.09∗∗∗ −0.33 −3.59∗∗∗

No colony 0.14 1.34 0.05 0.50
No common Colonizer −0.37 −1.37 −1.30 −12.10∗∗∗

Log distance −0.89 −27.64∗∗∗ −0.91 −22.21∗∗∗

Pseudo-R2 0.968 0.997

(B) With domestic trade flows
Country border −1.42 −4.97∗∗∗ −1.42 −4.60∗∗∗

No common official language −0.33 −3.46∗∗∗ −0.33 −2.58∗∗∗

No contiguity −0.43 −4.28∗∗∗ −0.43 −2.76∗∗∗

No colony 0.11 1.11 0.11 0.58
No common Colonizer −0.01 −0.02 −0.01 −0.03
Log distance −0.91 −20.25∗∗∗ −0.91 −17.77∗∗∗

Pseudo-R2 0.997 0.997

Notes: The estimates in Panel A are based on 3374 observations and those

in Panel B on 3481. Pseudo-R2 is defined as the correlation of observed an

predicted values. ∗∗∗ significant at 1 %.

The parameter estimates reported in panel (A) of Table 4 exclude domestic
trade flows and 49 missing trade flows. The parameter estimates differ substan-
tially between dummy and constrained PPML. With exception of the dummy for
colony, which is insignificant, all parameter estimates turn out higher in abso-
lute value under constrained PPML. Moreover, dummy PPML does a bad job in
predicting out of sample, since it substantially underestimates domestic trade of
the large countries. Aggregating the normalized trade flows predicted by dummy
PPML yields a total of 0.56, casting some doubt on the consistency of dummy
PPML estimates when domestic trade flows are missing. In contrast, per con-
struction under constrained PPML the predictions sum up to 1 coming up with
more realistic predictions of domestic trade flows.
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Panel B of Table 4 refers to the case of fully observed trade flows. In this setting
dummy PPML and constrained PPML yield identical point estimates, while their
estimated standard errors differ. In line with the theoretical findings and those of
the Monte Carlo simulations the standard errors tend to be lower under dummy
PPML leading to higher t-values. Since, with exception of the dummies for colony
and common colonizer all parameter are estimated very precisely, the conclusions
from the t-tests do not change, however. Under fully observed trade flows, it is
possible to estimate border effects which turn out to be substantial and similar in
size to those found in the literature. Overall, the results support the findings of
Yotov (2012), who argues that the impact of international economic integration
should be measured against that of internal markets by including domestic trade
flows.

The results for the counterfactual changes of the common language, contiguity
and common borders dummies are reported in Table 5 and refer to a conditional
general equilibrium setting (see Larch and Yotov, 2016). This exercise allows for
third country effects via changes in multilateral resistance terms, while output and
expenditures remain unchanged. To provide a summary of the estimated effects,
the sample is split in large and small countries (below and above the median
of the value of gross production) and average percentage changes of trade flows
within and between these groups are reported. The calculation of the welfare
effects in Table 6 follows Arkolakis, Costinot and Rodŕıguez-Clare (2012) and is
based on (ŝCii,C/ŝii,C)(1/1−σ), where the elasticity of substitution σ is assumed to be
6.982, the preferred estimate in Bergstrand, Egger and Larch (2013, Table 1). The
corresponding standard errors are derived using the delta method.

Overall, the estimated direct effects considerably overestimate the impact of the
reduction in trade barriers. In the counterfactual scenario with all trade barriers
removed that arise from a lack of a common language we see a substantial increase
in trade flows within the group of large countries (19.84%). However, despite the
precise estimation with a t-value of 4.01, the 95%−confidence interval turns out
quite large amounting to [10.14, 29.53] percentage points. The increase is smaller
in case of trade flows that involve small countries. However, with a reduction of
22.9%, [−37.77,−13.02], the impact on domestic trade is more pronounced in the
group of small countries, which translates into larger welfare gains of small coun-
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tries amounting to 4.44%, [2.21, 6.68]. In comparison the group of large countries
would achieve a welfare improvement of 1.54%, [0.46, 2.82] on average (see Table
6, Panel A). Reducing the trade barriers to those between neighboring countries
lead to a somewhat smaller direct impact (see Tables 5 and 6, Panel B). The main
difference is now that trade flows among the group of small countries decrease by
2.82%, [1.37, 4.28] on average. Again the average welfare effects exhibited in Table
6 are substantial for the group of small countries amounting to 3.72%, [0.54, 6.90],
while they are insignificant for the group of large countries.

Table 6: Estimated welfare effects of counterfactual changes
in common language, contiguity and country border

Change in % t-value [95% Conf. interval]

(A) Common language
Small 4.44 3.89∗∗∗ 2.21 6.68
Large 1.54 2.79∗∗∗ 0.46 2.62

(B) Contiguity
Small 3.72 2.29∗∗∗ 0.54 6.90
Large 1.09 1.54 −0.30 2.48

(C) Border
Small 22.18 4.13∗∗∗ 11.64 32.71
Large 7.99 2.83∗∗∗ 2.46 13.51

Notes: ∗∗∗ significant at 1%.

Lastly, Panel C of Table 5 reports the impact of eliminating country borders,
while preserving the effects of geography and the other trade barriers. This exercise
complements the standard counterfactual experiments of reverting to autarky re-
ported, e.g., in Costinot and Rodŕıguez-Clare (2014). Abandoning counterfactually
country borders yields a direct trade increase of 75.74%, [61.11, 90.37]. Accounting
for changes in multilateral resistances reveals considerable large effects on trade
flows among the group of large countries amounting to 91.77%, [66.69, 116.86])
on average. For trade flows from small to large and large to small countries the
corresponding estimates are 44.45%, [32.95, 55.95] and 38.73%, [31.68, 45.79], re-
spectively. Again the increase is smallest in case of trade flows among the group
of small countries which turns out insignificant. As shown in Table 6, remov-
ing borders would lead to pronounced welfare effects for the small countries of
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22.18%, [11.64, 32.71], while large countries would experience a much smaller in-
crease of 7.99%, [2.46, 13.51].

7 Conclusions

PPML is now widely used for estimation of structural gravity models that im-
pose trade balance restrictions, whose solutions define the exporter- and importer-
specific multilateral resistance terms. Introducing exporter and importer dummies
in cross-sectional models proved especially useful for estimation to account for
these multilateral resistances.

However, for calculating standard errors and confidence intervals of predicted
counterfactuals the dummy PPML approach is of limited use. Multilateral re-
sistance terms are not parameters to be estimated, rather they are solutions to
the system of multilateral multilateral resistances that depend on the structural
parameters of the gravity model. For comparative static analysis exactly this as-
sumption is commonly maintained, namely that the expected values of trade flows
adhere to the restrictions imposed by the system of multilateral resistances. This
assumption turns out very useful for both estimation of structural parameters and
the prediction of counterfactuals. Based on this assumption, constrained PPML
leads to a projection based estimator as proposed by Heyde and Morton (1993) in
a setting without dummies.

The present contribution establishes the asymptotic distribution of the con-
strained PPML estimator and, using the delta method, derives asymptotic results
for comparative static predictions and the implied percentage changes. Hence, it
is possible to test hypotheses on counterfactual changes and to provide confidence
intervals, both based on a limit distribution that is unaffected by incidental pa-
rameters. Monte Carlo simulations provide encouraging results for medium sized
cross-sections.

Lastly, the usefulness of the proposed estimation procedure is illustrated by
estimating a structural gravity model for 59 countries, analyzing the impact of
common language, contiguity and country borders on bilateral trade and welfare.
Results show that the impact is largest for trade flows involving a large trading
partner, while small countries gain most in terms of welfare from eliminating these
trade barriers. The quantitative estimates of these effects turn out significant in
almost all cases, while 95% confidence intervals of the counterfactual predictions
are relatively large, despite the precise estimation of the involved parameters.

24



Appendix

A The set of assumptions

Since βi,C(α) and γj,C(α) change with sample size, the DGP of the structural grav-
ity model forms a triangular array with index C.

Part I: Consistency

1) Normalization: βiC = 0.

2) The parameter space of α, Θ ⊂ RK , is compact. α0 is an interior point of Θ.

3) Disturbances: C2εij, ij = 1, ..., C is independently distributed as (0, σ2
ij) with

σ2
ij < σ <∞ and bounded support so that mij(α0, φC(α0))+εij > 0. One may

also write, εij = mij(α0, φC(α0))(ηij − 1) with ηij independently distributed
as (1, σ2

η,ij) and σ2
η ≤ σ2

η,ij ≤ σ2
η.

4) (i) ca/C
2 < mij(α, φC(α)) < (1− ca)/C2 for some positive constant ca < 0.5.

(ii) YW = cWC
2 for some positive constant cW .

(iii) The system of multilateral resistances holds under the true model:
rC(α0, φC(α0)) := D′m(α0, φC(α0)) −θC = 0, where θC is given, non-
stochastic and of order O (C−1).

5) Missings: K+2C−1
C2 <

∑C
j=1

∑C
i=1 vij

C2 ≤ 1.

6) Z possesses full column rank K, its elements are uniformly bounded by some
constant cz, i.e., |zij,k| ≤ cz and all elements of Z vary at the bilateral level.

Part II: Limit distribution of α̂

1. Let qij,C(α) = YW (mij(α0, φC(α0)) + εij) ln (mij(α, φC(α))YW )−mij(α, φC(α)).
qij,C(α) is twice continuously differentiable at every interior point α ∈ Θ for
each εij and zij.

2. Let M(α) = diag(mij(α, φC(α)) :

(i) G(α) = W ′VM(α)VW possesses uniformly bounded elements and is in-
vertible for α ∈ Θ′, where Θ′ is a closed ball around α0 in the interior of
Θ. ‖G(α)‖ ≤ (K + 2C − 1)cg,1 <∞ and ‖G(α)−1‖ ≤ (K + 2C − 1)cg,2 <
∞.
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(ii) The elements of
∣∣∣D ∂φ(α)

∂α′

∣∣∣ =
∣∣D (D′M(α)D)−1D′M(α)Z

∣∣ are uniformly

bounded by some constant cφ.

3. Assumption on moments sα(α) (Billingsley, 1995, Theorem 27.3). Let

sα(α)(K×1) = C2

C∑
i=1

C∑
j=1

[IK , 0K×2C−1]G1/2(α)QG−1/2F (α)′G
−1/2(α)

∗wij(K+2C−1×1)vijεij = A(α)ε.

E
[
‖sα(α)‖2+δ |Z, V

]
= o(1).

4. Let QM1/2D(α) = IC2 −M(α,Z)
1
2D (D′M(α,Z)D)−1D′M(α,Z)

1
2 . The fol-

lowing limits exist and are finite:

(i) B(α) = Z ′VM(α)
1
2QM1/2D(α)M(α)

1
2Z, B0 = limC→∞B(α0), B0 is non-

singular.

(ii) The limits Γc0 = limC→∞ SM(α,Zc)QM1/2D(α)M(α,Zc)
1
2Zc and Γ0 =

limC→∞ SM(α,Z)
1
2QM1/2D(α)M(α,Z)

1
2Z exist, are non-zero and have

rank s, where s is the rank of the s×C2, s ≤ K, selection matrix that is
scaled by C2.

(iii) The limits Υc
0 = limC→∞RM(α0, Z)−1M(α0, Z

c)[IC2−D (D′M(α0, Z
c)D)−1

∗D′M(α0, Z
c)]Zc and Υ0 = limC→∞R[IC2−D (D′M(α0, Z)D)−1D′M(α0, Z)]

Z exist, are non-zero and have rank r, where r is the rank of the r×C2,
r ≤ K, selection matrix.

B The implicit solution to the system of multi-

lateral resistances

The parameters βi,C(α) and γj,C(α) are derived by solving the non-stochastic sys-
tem of the multilateral resistance equations with solutions φC(α) = [βC(α),′ γC(α)′]′.
The system can be written as

rC(α, φC(α)) := D′m(α, φC(α))− θC = 0,

where rC(α, φC(α)) is continuously differentiable. The derivative is

∂rC(α, βC , γC)

∂(β′C , γ
′
C)

=

[
χ
C

TC(α)
T ′C(α) ΘC

]
,
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where χ
C

= diag(κ1,C , ..., κC−1,C), ΘC = diag(θ1,C , ..., θC,C) and TC(α) is a (C −
1 × C) matrix with typical element mij(α), i = 1, ..., C − 1 and j = 1, ..., C. To
guarantee the existence of a unique solution (Sydsaeter et al., 2005, p. 102) it has
to hold that∣∣∣∣det

(
∂rC(βC , γC)

∂(β′C , γ
′
C)′

)∣∣∣∣ ≥ ch > 0 and sup
ij

{∣∣∣∣∂rC,ij(βC , γC)

∂βi,C)

∣∣∣∣ , ∣∣∣∣∂rC,ij(βC , γC)

∂γj,C

∣∣∣∣} ≤ ck

for some positive constants ch and ck. With respect to latter observe that 0 < ca
C2 ≤

ez
ij ′α+βi,C(α)+γj,C(α) ≤ 1−ca

C2 < 1. The former holds as ∂rC(βC ,γC)
∂(β′C ,γ

′
C)′

is a strictly diago-

nally dominant matrix with real positive diagonal entries and it is thus positive def-
inite. Hence, one can conclude that for finite C in its normalized form the system
of multilateral resistances possesses a unique solution φC(α) = [βC(α)′, γC(α)′]′,
which is continuously differentiable in α at every interior point in Θ.

C Proof of Proposition 1 (Constrained PPML)

Following Falocci, Paniccià and Stanghellini (2009) assume that at iteration r the
estimate ϑ̂C,r is given and use a linearization of the score around ϑ̂C,r. The remain-
ders are denoted by br and cr, respectively. To simplify notation, the arguments
of Ĝr = W ′VM(ϑ̂C,r)VW and F̂r = D′M(ϑ̂C,r)W are skipped.

W ′V (sC −m(ϑ̂C,r+1))︸ ︷︷ ︸
0

= W ′V
(
sC −m(ϑ̂C,r)

)
− Ĝr

(
ϑ̂C,r+1 − ϑ̂C,r

)
+ F̂ ′rλr + br

D′m(ϑ̂C,r+1)− θC︸ ︷︷ ︸
0

= D′m(ϑ̂C,r)− θC +D′M(ϑ̂C,r)W︸ ︷︷ ︸
F̂r

(
ϑ̂C,r+1 − ϑ̂C,r

)
+ cr

F̂rϑ̂C,r+1 = θC −D′m(ϑ̂C,r) + F̂rϑ̂C,r − cr︸ ︷︷ ︸
ĥr

Under the assumption that the inverses of Ĝr and F̂rĜ
−1
r F̂ ′r exist for finite C, one

obtains

ϑ̂C,r+1 − ϑ̂C,r = Ĝ−1
r

(
W ′V

(
sC −m(ϑ̂C,r)

)
+ F̂ ′rλr + br

)
F̂r

(
ϑ̂C,r+1 − ϑ̂C,r

)
= F̂rĜ

−1
r F̂ ′rλ̂r + F̂rĜ

−1
r

(
W ′V

(
sC −m(ϑ̂C,r)

)
+ br

)
λ̂r =

(
F̂rĜ

−1
r F̂ ′r

)−1 (
F̂r

(
ϑ̂C,r+1 − ϑ̂C,r

)
− F̂rĜ−1

r W ′V
(
sC −m(ϑ̂C,r)

)
+ br

)
.
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Inserting λ̂r into the score equation yields

0 = W ′V
(
sC −m(ϑ̂C,r)

)
− Ĝr

(
ϑ̂C,r+1 − ϑ̂C,r

)
+F̂ ′r

(F̂rĜ−1
r F̂ ′r

)−1

F̂rϑ̂C,r+1︸ ︷︷ ︸
ĥr

− F̂rϑ̂C,r − F̂rĜ−1
r

(
W ′V

(
s−m(ϑ̂C,r)

)
+ br

)
+ br

= −Ĝr

(
ϑ̂C,r+1 − ϑ̂C,r

)
+

(
I − F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1

F̂rĜ
−1
r

)(
W ′V

(
sC −m(ϑ̂C,r)

)
+ br

)
+F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1 (
ĥr − F̂rϑ̂C,r

)
.

Given ϑ̂C,r, one can calculate ĥr, F̂r and Ĝr to obtain

ϑ̂C,r+1 − ϑ̂C,r =

(
Ĝ−1
r − Ĝ−1

r F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1

F̂rĜ
−1
r

)
W ′V

(
sC −m(ϑ̂C,r) + br

)
+Ĝ−1

r F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1 (
ĥr − F̂rϑ̂C,r

)
.

=

(
Ĝ−1
r − Ĝ−1

r F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1

F̂rĜ
−1
r

)
W ′V

(
sC −m(ϑ̂C,r) + br

)
+Ĝ−1

r F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1 (
θC −D′m(ϑ̂C,r)− cr

)
,

using ĥr = θC − D′m(ϑ̂C,r) + F̂rϑ̂C,r − cr. Upon convergence ϑ̂C,r+1 = ϑ̂C,r and
cr = 0, so that

ĥr − F̂rϑ̂C,r = θC −D′m(ϑ̂C,r) + F̂rϑ̂C,r − cr − F̂rϑ̂C,r
= θC −D′m(ϑ̂C,r) = 0.

λ̂r = −
(
F̂rĜ

−1
r F̂ ′r

)−1

F̂rĜ
−1
r

(
W ′V

(
sC −m(ϑ̂C,r)

)
+ br

)
.

Then, also br = 0 holds and

0 =

(
Ĝ−1
r − Ĝ−1

r F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1

F̂rĜ
−1
r

)(
W ′V

(
s−m(ϑ̂C,r)

))
,

see Newey and McFadden (1994, p. 2219) and the projection estimator of Heyde
and Morton (1993, p. 756).
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D Proof of Proposition 2, part I (the consistency

proof)

(a) Non-stochastic counterpart to the likelihood:

Q0,C(ϑC) = YW
C2

(
C∑
j=1

C∑
i=1

νij (mij(ϑC,0) ln (mij(ϑC)YW )−mij(ϑC))

)

where ϑC = (α, φC(α)) and φC(α) is continuous and continuously differentiable.
Hence the restricted non-stochastic counterpart to the likelihood is given as

Q0,C(α, φC(α)) + λ′

D′m(α, φC(α))− θC︸ ︷︷ ︸
0

 = Q0,C(α, φC(α))

and it is sufficient to consider Q0,C(α, φC(α)) to establish consistency.
(b) Likelihood under true DGP:

QC(α, φC(α)) = YW
C2

C∑
j=1

C∑
i=1

νij((mij(ϑC,0) + εij) ln (mij(ϑC)YW )−mij(ϑC))

(c) Difference (b)-(a):

QC(α, φC(α))−Q0,C(α, φC(α)) = YW
C2

C∑
j=1

C∑
i=1

vijεij ln (mij(φC(α))YW )

(d) Identification follows from an argument put forward by Wooldridge (1997).
For scalars µ0 and µ a function f(µ) = µ0 ln(µ) − µ is maximized at µ = µ0 as
df(µ)
dµ

= µ0
µ
− 1 and d2f(µ)

dµ2
= −µ0

µ2
< 0. For finite C it follows that Q0,C(α, φC(α)) ≤

Q0,C(α0, φC(α0)) for α 6= α0, since under Assumption Part I.6 Z is of full col-
umn rank K and varies at the bilateral level. Thus, α0 is a unique maximizer of
Q0,C(α, φC(α0)) at given V. Note ca/C

2 < mij(α, φC(α)) < (1 − ca)/C2 for some
constant 0.5 > cα > 0 and α ∈ Θ. Consider a summand in QC(α, φC(α)).

YW |qij,C(α)|
= YW |(mij(α0, φC(α0)) + εij) ln (mij(α, φC(α))YW )−mij(α, φC(α))|
≤ YW |mij(α0, φC(α0))| |ln (mij(α, φC(α))YW )|+ YW |mij(α, φC(α))|

+YW |εij| |ln (mij(α, φC(α))YW )|
≤ cWC

2 1−ca
C2 |ln(cacW )|+ (1− ca)cW + cWC

2 |εij| |ln(cacW )|
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E[ sup
α∈Θ′
|YW qij,C(α)|] ≤ cW (1− ca) |ln(cacW )|+ cWC

2 σ
C2 |ln(cacW )| <∞,

since E [|εij|] ≤ E
[
|εij|2

] 1
2 ≤ σ

C2 by Lyaponov’s inequality. The claim follows from
the ULLN given in Pötscher and Prucha (2003), Theorem 23.

(e) plimC→∞ [supα∈Θ′ |QC(α, φC(α))−Q0,C(α, φC(α))|] = op(1) can be proved di-
rectly.

sup
α∈Θ′
|QC(α, φC(α))−Q0,C(α, φC(α))| = sup

α∈Θ′

∣∣∣∣∣ 1

C2

C∑
j=1

C∑
i=1

vijεijYW ln (mij(α, φC(α))YW )

∣∣∣∣∣
≤ 1

C2

C∑
j=1

C∑
i=1

vij
∣∣εijcWC2

∣∣ |ln ((1− ca) cW )| = |ln ((1− ca) cW ) cW |
C∑
j=1

C∑
i=1

vij |εij|

and Chebyshev’s inequality implies

P

(
C∑
j=1

C∑
i=1

vij |εij| ≥ κ

)
≤ 1

κ2

C∑
j=1

C∑
i=1

vijV ar(εij)

≤ 1

κ2

(
C∑
j=1

C∑
i=1

vij

)
σ2

C4

=
1

κ2

∑C
j=1

∑C
i=1 vij

C2

σ2

C2
→ 0,

By Assumption Part I.3
∑C

j=1

∑C
i=1 V ar(εij) =

∑C
j=1

∑C
i=1

σ2
ij

C4 <
σ2

C2 and Assump-

tion Part I.5
∑C
j=1

∑C
i=1 vij

C2 = O(1). Therefore, consistency of α̂ follows. Consis-
tency of α under the unrestricted model with dummies follows, since it also has
Q0,C(α, φC(α)) as non-stochastic counterpart and the same arguments as above
apply.

E Proof of Proposition 2, Part 2 (limit distribu-

tion of α̂):

The proof uses
(a) the mean value theorem where G∗ and F ∗ are evaluated at ϑ∗C , whose elements

lie (element-wise) in between those of ϑ̂C and ϑC,0 (see Newey and McFadden,
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1994, p. 2219) : ∂ lnLC(ϑC)
∂ϑC

∣∣∣
ϑC=ϑ̂C

∂ lnLC(ϑC)
∂λ

∣∣∣
ϑC=ϑ̂C

 =

[
0
0

]
=

[
W ′V ε

0

]
+

[
G∗ F ∗′

F ∗ 0

] [
ϑC − ϑC,0

λ

]

(b)

QG−1/2F ′(α) =
[
I −G−1/2(α)F ′(α)

(
F (α)G−1(α)F ′(α)

)−1
F (α)G−1/2(α)

]
(c)

sα(α)(K×1) = C2

C∑
i=1

C∑
j=1

[IK , 0K×2C−1]G1/2(α)QG−1/2F ′(α)G
−1/2(α)wijvijεij

= A(α)ε.

(d)

B(α) = Z ′VM(α)
1
2

[
I −M(α)

1
2D(D′M(α)D)−1D′M(α)

1
2

]
M(α)

1
2Z

(e)

C(α̂− α0) = −B(α∗)−1C−1A(α∗)ε

Claims:
(i)
E supα∈Θ′ ‖sα,ij(α)‖ <∞
E supα∈Θ′ ‖sα,ij(α)sα,ij(α)′‖ <∞
B(α) is continuous in α and ‖B(α)−B(α0)‖ <∞.

(ii)

C−1sα(α0)
d→ N(0, A0ΩεA

′
0)

C(α̂− α0)
d→ N

(
0, B−1

0 A0ΩεA
′
0B
−1
0

)
,

whereA0ΩεA0 = p limC→∞
1
C2

∑C
i=1

∑C
j=1 sα,ij(α0)sα,ij(α0)′ = p limC→∞

1
C2A(α∗)εε′A(α∗)′

and B0 = p limC→∞B(α∗).

ad (i) Consider

[IK , 0K×2C−1]G1/2(α)QG−1/2F ′(α)G−1/2(α)wijvijεij
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As QG−1/2F ′(α) is a projection matrix with QG−1/2F ′(α) = QG−1/2F ′(α)′ it follows
that

‖QG−1/2F ′(α)v‖ ≤ ‖v‖ for any vector v.

Therefore, we have that

‖sα,ij(α)‖2 =
∥∥C2 [IK , 0K×2C−1]G1/2(α)QG−1/2F ′(α)G−1/2(α)wijvijεij

∥∥2

≤
∥∥C2 [IK , 0K×2C−1]G1/2(α)

∥∥2 ∥∥G−1/2(α)wijvij
∥∥2 ‖εij‖2

≤ C2Kc2
z(1− ca) (K + 2C − 1)2 cgc

2
w ‖εij‖

2 ,

using

∥∥C2 [IK , 0K×2C−1]G1/2(α)
∥∥2

= C2tr

(
G1/2(α)

[
IK
0

]
[IK , 0]G1/2(α)

)
= C2tr

([
IK 0
0 0

] [
Z ′VM(α)V Z Z ′VM(α)V D
D′VM(α)V Z D′VM(α)V D

])
= C2tr

([
Z ′VM(α)V Z Z ′VM(α)V D

0 0

])
= C2tr ([Z ′VM(α)V Z]) = C2

K∑
k=1

C∑
i=1

C∑
j=1

z2
ij,kvijmij(α)

≤ C2KC2c2
z

1− ca
C2

= C2Kc2
z(1− ca).

Let vij = 1 and denote the typical element of G−1(α) by gkl∥∥G−1/2(α)wijvij
∥∥2

= tr
(
w′ijG

−1(α)wij
)

= tr
(
G−1(α)wijw

′
ij

)
=

K+2C−1∑
k=1

K+2C−1∑
l=1

wij,kgklwij,l ≤ (K + 2C − 1)2 cg,2c
2
w.

It follows that

‖sα,ij(α)‖2 =
∥∥C2 [IK , 0K×2C−1]G1/2(α)QG−1/2F ′(α)G

−1/2(α)wij(K+2C−1×1)vijεij
∥∥

≤ C2Kc2
z(1− ca) (K + 2C − 1)2 cg,2c

2
w ‖εij‖

2 .

By Assumption Part I.3 E
[
‖εij‖2] = E

[
σ2
ij

C4

]
≤ σ2

C4 , it follows that

E sup
α∈Θ′
‖sα,ij(α)‖2 ≤ C2Kc2

z(1− ca) (K + 2C − 1)2 cg,2c
2
w

σ2

C4
<∞.
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Thereby, Θ′ is a closed ball around α0 in the interior of Θ. By Assumption Part
II.2 the elements of G−1(α) are uniformly bounded by a finite constant, cg,2, and
the elements of W are uniformly bounded by cw. Furthermore observe, that

‖sα,ij(α)sα,ij(α)′‖ = (tr (sα,ij(α)sα,ij(α)′sα,ij(α)sα,ij(α)′))
1
2

= tr (sα,ij(α)′sα,ij(α)sα,ij(α)′sα,ij(α))
1
2

= tr (sα,ij(α)′sα,ij(α))

= ‖sα,ij(α)‖2

so that
E sup

α∈Θ′
[‖sα,ij(α)sα,ij(α)′‖] ≤ ∞.

Hence, it follows that by Lemma 3.2 of Pötscher and Prucha (1997) that

sup
α∈Θ′

∥∥∥∥∥C−2

C∑
i=1

C∑
j=1

(sα,ij(α)− E[sα,ij(α)])

∥∥∥∥∥ P→ 0

sup
α∈Θ′

∥∥∥∥∥C−2

C∑
i=1

C∑
j=1

(sα,ij(α)sα,ij(α)′ − E[sα,ij(α)sα,ij(α)′])

∥∥∥∥∥ P→ 0.

Lastly, consider

B(α) = Z ′VM(α)
1
2

[
I −M(α)

1
2D(D′M(α)D)−1D′M(α)

1
2

]
M(α)

1
2Z

= Z ′VM(α)
1
2QM1/2D(α)M(α)

1
2Z

B(α)−B(α0) = Z ′VM(α)
1
2QM1/2D(α)M(α)

1
2Z

=
(
Z ′VM(α)

1
2 − Z ′VM(α0)

1
2

)
QM1/2D(α)M(α)

1
2Z

+Z ′VM(α0)
1
2QM1/2D(α)M(α)

1
2Z

+Z ′VM(α0)
1
2QM1/2D(α0)M(α)

1
2Z

−Z ′VM(α0)
1
2QM1/2D(α0)M(α)

1
2Z

−Z ′VM(α0)
1
2 (QM1/2D(α0))M(α0)

1
2Z
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B(α)−B(α0) = Z ′V
[
M(α)

1
2 −M(α0)

1
2

]
QM1/2D(α)M(α)

1
2Z

+Z ′VM(α0)
1
2 [QM1/2D(α0)−QM1/2D(α)]M(α)

1
2Z

+Z ′VM(α0)
1
2QM1/2D(α0)

[
M(α)

1
2 −M(α0)

1
2

]
Z

Observe that

0 <
∥∥∥Z ′VM(α0)

1
2 [QM1/2D(α0)−QM1/2D(α)]M(α)

1
2Z
∥∥∥

≤
∥∥∥Z ′VM(α0)

1
2

∥∥∥ ‖QM1/2D(α0)−QM1/2D(α)‖
∥∥∥M(α)

1
2Z
∥∥∥

‖QM1/2D(α0)−QM1/2D(α)‖2 = tr(QM1/2D(α0))− tr (QM1/2D(α))

=
(
C2 − 2C − 1

)
−
(
C2 − 2C − 1

)
= 0

Z ′VM(α)
1
2 = Z ′VM(α0)

1
2

+1
2
Z ′VM(α∗)

1
2

(
Z + ∂φ(α)

∂α′

∣∣∣
α=α∗

)
(α− α0)∥∥∥Z ′V (M(α)

1
2 −M(α0)

1
2

)∥∥∥ ≤ ∥∥∥Z ′VM(α∗)
1
2

(
Z +D ∂φ(α)

∂α′

∣∣∣)
α=α∗

∥∥∥ ‖α− α0‖

≤ 1
2

(
ca
C2KC

2 (cz + cφ)
) 1

2 ‖α− α0‖
= L ‖α− α0‖ .

The elements of
∣∣∣Z +D ∂φ(α)

∂α′

∣∣∣
α=α∗

∣∣∣ are uniformly bounded by cz+cφ (Assumptions

Part I.6 and Part II. 2) so that L is a finite positive constant. Note the assumption

of a constant share of missings. A similar conclusion holds for
∥∥∥(M(α)

1
2 −M(α0)

1
2

)
Z
∥∥∥ .

Hence,

‖B(α)−B(α0)‖ ≤
∥∥∥Z ′V (M(α)

1
2 −M(α0)

1
2

)∥∥∥∥∥∥M(α)
1
2Z
∥∥∥

+
∥∥∥Z ′VM(α0)

1
2

∥∥∥∥∥∥(M(α)
1
2 −M(α0)

1
2

)
Z
∥∥∥

=
(∥∥∥M(α)

1
2Z
∥∥∥+

∥∥∥Z ′VM(α0)
1
2

∥∥∥)L ‖α− α0‖

≤ 2
(
KC2c2

z

ca
C2

) 1
2
L ‖α− α0‖

which proves continuity of B(α). The elements of Z are bounded away from zero

and from above. QM1/2D(α) projects M(α,Zc)
1
2Zc onto the orthogonal comple-
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ment of the hyperplane spanned by D′M(α,Z)
1
2 (in the exporter and importer di-

mension), while Z exhibits bilateral variation. Further, the rank ofB(α) isK and it
follows by Theorem 14 of Pötscher and Prucha (2003) that B(α∗)−B(α0) = op(1).

ad (ii) The Lyapunov central limit theorem for triangular arrays (Billingsley, 1995,
Theorem 27.3) and the Cramer-Wold device can be applied to derive

C−1sα(α̂)
d→ N(0, A0ΩεA

′
0)

and
C(α̂− α0)

d→ N(0, B−1
0 A0ΩεA

′
0B
−1
0 ).

For estimation one uses

B̂ = B(α̂)
p→ B0, C

−2A(α̂)Ω̂εA(α̂)
p→ A0ΩεA

′
0.

F Proof of Proposition 3:

Part 1 (see Pollard, 2002, p. 184):

CSm(α̂, Z) = CSm(α0, Z
c) + CΓcC,0 (α̂− α0) + op ‖C(α̂− α0)‖

= CSm(α0, Z
c) + CΓcC,0 (α̂− α0) + op(Op(1))

Claims:
(i) Let

ΓC(α0, Z
c)s×K = SM(α0, Z

c)
1
2QM1/2D(α)M(α,Zc)

1
2Zc.

The elements of Γc0 = limC→∞ ΓC(α0, Z
c) are finite, non-zero and have rank s so

that
CΓc0 (α̂− α0)

d→ N(0,Γc0VaΓ
c′
0 ).

(ii) p limC→∞ ΓcC(α̂) = Γc0

ad (i) Remember that the normalized selection matrix S has finite dimension
so that SM(α0, Z) possesses typical non-zero element ca ≤ C2mij(α0,zij) ≤ 1 −
ca. The elements ΓcC(α0) are bounded away from zero, since QM1/2D(α) projects

M(α,Zc)
1
2Zc onto the orthogonal complement of the hyperplane spanned in the

exporter and importer dimension by D′M(α,Zc)
1
2 , while Zc exhibits bilateral vari-

ation. Hence, the rank ΓC(α0, Z
c) is s as M(α0, Z

c)
1
2 is a diagonal matrix with non-

zero diagonal elements with lower bound
(
C2 ca

C2

) 1
2 > 0 and upper bound

(
C2 1−ca

C2

) 1
2

35



< ∞ by Assumption Part I.4, respectively. By Assumption Part I.6 the elements
of Z are uniformly bounded and by Assumption Part II.6 limC→∞ ΓC(α0, Z

c) is
assumed to exist with rank s.

ad (ii): The claim follows from the continuity of ΓcC(α), which can be proved using
the same arguments as in the proof of Proposition 2, and Pötscher and Prucha
(2003, Theorem 14). Therefore, it holds that Γ̂c − Γc0 = op(1) and Γ̂− Γ0 = op(1).
The claim then follows from the limit distribution of α̂ given in Proposition 2 and
Corollary 5 in Pötscher and Prucha (2003).

(Part 2) For percent changes define the selection matrix R so that RM(α0, Z)−1

typical non-zero element mij,C(α0,z
c
ij)
−1 and observe that

RM(α̂, Z)−1m(α̂, Zc)

has typical non-zero element

e(z
c
ij−zij)

′
α̂+βci,C(α̂)+γci,C(α̂)−βi,C(α̂)−γj,C(α̂)

Taylor series expansion leads to

C
(
RM(α̂, Z)−1m(α̂, Zc)−RM(α0, Z)−1m(α0, Z

c)
)

= C

RM(α0, Z)−1M(α0, Z
c)
(
Zc −D ∂φcC

∂α′

)
︸ ︷︷ ︸

ΥC(α0,Zc)

(α̂− α0)

− R
(
Z −D ∂φC

∂α′

)
(α̂− α0)︸ ︷︷ ︸

ΥC(α0,Z)

+ op (1)

= CR (ΥC(α0, Z
c)−ΥC(α0, Z)) (α̂− α0) + op (1) ,

where

ΥC(α0, Z
c) = RM(α0, Z)−1M(α0, Z

c)
1
2QM1/2D(α)M(α,Zc)

1
2Zc

ΥC(α0, Z) = RM(α0, Z)−
1
2QM1/2D(α)M(α,Z)

1
2Z.

The elements ΥC(α0, Z
c) are bounded away from zero, since QM1/2D(α) projects

onto the orthogonal complement of the hyperplane spanned by D′M(α,Zc)
1
2 . The

rank of ΥC(α0, Z
c) is r < K as RM(α0, Z)−1 is a diagonal matrix with non zero

diagonal elements C2

1−ca ≤ mij(α0, Z)−1 ≤ C2

ca
. Further, the rank of ΥC(α0, Z

c)
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is K and ‖ΥC(α0, Z
c)‖ ≤ R ‖M(α0, Z)−1‖ ‖M(α0, Z

c)Zc‖ ≤ (Rca(1− ca)cz)
1
2 =

O(1). The same arguments apply for ΥC(α0, Z). By Assumption Part II.4 Υc
0 =

limC→∞ΥC(α0, Z
c) and Υ0 = limC→∞ΥC(α0, Z) are assumed to exist with rank

r.
Similar to Part 1 ΥC(α̂, Zc)−ΥC(α0, Z

c) = op(1) and ΥC(α̂, Z)−ΥC(α0, Z) =
op(1) by the continuity of ΥC(α,Z) and the claim follows.

G Remarks on Proposition 2:

Remark 2: The comparison of dummy PPML and constrained PPML

(a) In order to derive the limit distribution of the dummy PPML, we define
G
∗

= W ′VM
∗
VW with M

∗
= M(α∗, φ

∗
C), where ϑ

∗
= (α∗, φ

∗
C) lies elementwise be-

tween ϑ and ϑ0. Applying the mean-value theorem, the score of the unconstrained
likelihood yields

0 = W ′V ε−G∗
[

α− α0

φC − φC(α0)

]
.

The inverse of G
∗

has blocks

G
∗11

=
(
Z ′VM

∗ 1
2Q

M
∗ 12 V D

M
∗ 1
2V Z

)−1

G
∗12

= −G11
0 Z

′VM
∗ 1
2V D

(
D′VM

∗
V D

)−1

G
∗22

=

[
D′V

(
M
∗ −M∗

V Z
(
Z ′VM

∗
V Z
)−1

Z ′VM
∗
)
V D

]−1

and it holds that[
α− α0

φC − φC(α0)

]
=

[
G
∗11

G
∗12

G
∗21

G
∗22

]
W ′V ε

α− α0 = G
∗11

(Z ′ −G∗12G
∗−1

22 D′)V ε.

In terms of the results of Proposition 2 it is easily seen that

B
∗−1

= G
∗11

A
∗

= C2Z ′M
∗ 1
2

(
I −M∗ 1

2V D
(
D′VM

∗
V D

)−1

D′M
∗ 1
2

)
M
∗− 1

2V

= C2Z ′M
∗ 1
2Q

M
∗ 12 V D

M
∗− 1

2V.
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The comparison of dummy PPML and constrained PPML is straight forward under

fully observed trade flows with V = IC2 . In this case we have B∗−1 = B
∗−1

= G
∗11

and (dropping arguments)

(
FG−1F ′

)−1
=

([
G21 G22

] [ G11 −G11G12G
−1
22

−G−1
22 G21G

11 G22

]
G21

G22

)−1

=

([
G21G

11 −G21G
11, −G21G

11G12G
−1
22 +G22G

22
] G21

G22

)−1

= −
(
G21G

11G12 +G22G
22G22

)−1

and

FG−1W ′ =

([
G21 G22

] [ G11 −G11G12G
−1
22

−G−1
22 G21G

11 G22

] [
Z ′

D′

])
=

[
G21G

11 −G21G
11, −G21G

11G12G
−1
22 +G22G

22
] [ Z ′

D′

]
=

(
−G21G

11G12 +G22G
22G22

)
G−1

22 D
′

Therefore, the term (FG−1F ′)
−1
FG−1W ′ reduces to G−1

22 D
′. It follows that

α̂− α0 = G∗11[IK , 0]

([
Z ′

D′

]
−
[
G∗12G

∗−1
22 D′

G∗22G
∗−1
22 D′

])
ε

= G∗11
(
Z ′ −G∗12G

∗−1
22 D′

)
ε

Thus constrained PPML and dummy PPML estimators of α0 have the same limit
distribution in this case.

Remark 3: The estimation of V ar (α̂) and V ar (α) under fully observed trade
flows

The difference in the variance estimation between the two estimators is best illus-
trated for the case of fully observed trade flows. Defining Z̃ = M

1/2
0 Z, D̃ = M

1/2
0 D

and QD̃ = IC2 − D̃(D̃′D̃)−1D̃′ the residuals of constrained PPML are based on

A(α0) = C2Z ′
[
IC2 −M0D(D′M0D)−1D′

]
= C2Z ′M

1/2
0

[
IC2 −M1/2

0 D(D′M0D)−1D′M
1/2
0

]
M
−1/2
0

= C2Z̃ ′QD̃M
−1/2
0
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and (
Z̃ ′QD̃Z̃

)
(α̂− α0) = Z̃ ′QD̃M

−1/2
0 ε+ op(1)

Ignoring the remainder, the residuals estimated by constrained PPML can be writ-
ten as

M
−1/2
0 ε̂ = M

−1/2
0 ε−QD̃Z̃(α̂− α0)

= M
−1/2
0 ε−QD̃Z̃

(
Z̃ ′QD̃Z̃

)−1

Z̃ ′QD̃M
−1/2
0 ε

M
−1/2
0 ε̂ = HQ

D̃
Z̃M

−1/2
0 ε

with HQ
D̃
Z̃ = I − PQ

D̃
Z̃ , PQ

D̃
Z̃ = QD̃Z̃

(
Z̃ ′QD̃Z̃

)−1

Z̃ ′QD̃ being symmetric and

idempodent. In contrast, dummy PPML implies that (again ignoring the remain-
der)

ε = ε−WG−1
0 W ′ε = M

1/2
0 HW̃M

−1/2
0 ε,

where HW̃ = IC2 − W̃
(
W̃ ′W̃

)−1

W̃ is symmetric and idempotent. Let PD̃ =

D̃
(
D̃′D̃

)−1

D̃′. Since HW̃ can be factored as HW̃ =
(
IC2 − PQ

D̃
Z̃

) (
IC2 − PD̃

)
it

follows that HW̃ − IC2 = PQ
D̃
Z̃ + PD̃. Following Chesher and Jewitt (1987) the

proportionate bias of V̂α is defined as pb(V̂α) = E
[
v′V̂αv
v′Vαv

]
for some vector v 6= 0

and similarly for V α. For the presten estimators it follows that

v′V̂αv = v′B(α0)−1Z̃QD̃diag(M−1
0 ε̂ε̂)QD̃Z̃

′B(α0)−1v

= z′diag(ε̂ε̂)z

with z = M
−1/2
0 QD̃Z̃

′B(α0)−1v. Chesher and Jewitt (1987) demonstrate that the
proportionate bias in general depends on the degree of heteroskedasticity and on
the features of the data as represented by the main diagonal elements hcij,ij of
PQ

D̃
Z̃ and hdij,ij of HW̃ − IC2 , respectively. Thereby, 1− hlij,ij, l = c, d, are used as

a measures of leverage. Further, Chesher and Jewitt (1987) show that an upper

bound of pb(V̂α) is given as

supz

(
pb(V̂α)

)
≤ max

ij

C∑
l=1,l 6=i

C∑
k=1,l 6=j

σ2
η,lk

σ2
η,ij

(
hcij,lk

)2
+ hcij,ij(h

c
ij,ij − 2).

This uses the multiplicative error model with ε = M0(η − ιC2) and sets z =

M
1/2
0 QD̃Z̃

′B(α0)−1v. Since 0 ≤
∑C

l=1,l 6=i
∑C

k=1,l 6=j
(
hcij,lk

)2
= hcij,ij

(
1− hcij,ij

)
≤ 1

2
,
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σ2
η,lk

σ2
η,ij
≤ σ2

η

σ2
η
, the elements of the main diagonal of PD̃ lie in [0, 1] and its trace is

2C − 1, it follows that hdij,lk = hcij,lk +O(C−1) and

pb(V̂α) ≤ 1
2

(
σ2
η

σ2
η
− 1
)
−min(hcij,ij)

pb(V α) ≤ 1
2

(
σ2
η

σ2
η
− 1
)
−min(hcij,ij)−O(C−1),

showing that the upper bound of the proportionate bias of V α is lower than that
of V̂α. The difference is O(C−1).

Remark 4: The restriction D′ε = 0

Often data are constructed such that D′sC = θC and V = IC2 . For example,
domestic trade flows can be derived as sii = κC,i −

∑C
j=1,j 6=i sij and sCj = θC,j −∑C

i=1,i 6=C sCj. This poses restrictions on the disturbances such that D′ε = 0 and
the score of both dummy and constrained PPML reduces to

C (α− α0) = CG
∗11
Z ′ε.

A simple possible specification of the disturbances would be to assume that εij is in-

dependently distributed as (0, σ2
ij) for i 6= j and i 6= C, while εii = −

∑C
j=1,j 6=i εij and

εCj = −
∑C

i=1,i 6=C εij. One can partition the data so that ε = (ε′R, ε
′
U)′, where εR

includes εii, i = 1, .., C − 1 and εCj, j = 1, .., C, while εU in comprises the remain-
ing disturbances that are assumed to be distributed independently (0, σ2

ij). The
matrices D and Z are be partitioned in the same way. Then one can write

D′ε = D′RεR +D′UεU = 0.

Note, DR has dimension 2C − 1× 2C − 1 and it is invertible so that

εR = −D′−1
R D′UεU .

Inserting yields

C (α− α0) = CG
∗11

[Z ′R, Z
′
U ]

[
−D′−1

R D′U
IR

]
εU = CG

∗11 [−Z ′RD′−1
R D′U + Z ′U

]
εU

A(α) = C2
[
−Z ′RD′−1

R D′U + Z ′U
]
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with

G
∗11 p→ B−1

0

C−2A(α̂)ε̂′U ε̂UA(α̂)′
p→ lim

C→∞
C−2

(
−Z ′RD′−1

R D′U + Z ′U
)

ΩU

(
−Z ′RD′−1

R D′U + Z ′U
)′
.

H Data Appendix

The data on trade flows, xii,C , production, Yi, and expenditure, Ei, are corrected
for trade with the rest of the world as well as for trade imbalances. The total
production value of country i is given as xi.,C =

∑
j xij,C + xi,ROW,C and total

expenditures by x.i,C =
∑

j xji,C + xROW,i,C so that the trade balance is di,C =
xi.,C − x.i,C . Since data are available for 59 countries, exports to the rest of the
world (ROW) and imports from ROW of country i have been aggregated in si,ROW,C
and sROW,i,C . Domestic shipments are implicitly defined as

κi,C =
xi.,C − xi,ROW,C

YW
= sii,C +

C∑
j 6=i

sij,C

θi,C =
x.i,C − di,C − xROW,i,C

YW
= sii,C +

C∑
h6=i

shi,C .

where YW denotes overall (world) production or expenditure for the 59 countries.
Note that

∑C
i=1 di,C = 0 per definition and that

∑C
i=1 κi,C =

∑C
j=1 θi,C = 1. Ag-

gregate exports and imports from OECD-Stan allow the calculation of xi,ROW,C ,
xROW,i,C and di,C and in turn the remaining figures. The data then fulfil the above

mentioned aggregation restrictions, κi,C =
∑C

i=1 sij,C and θi,C =
∑C

j=1 sij,C , and
thus imply the restrictions of the disturbances as discussed in the text.
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