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Abstract

The use of high-dimensional fixed-effects estimation has become customary with

the estimation of gravity models of bilateral trade, migration, or commuting as

outcome. However, fixed-effects methods can be used without incidental-parameter

bias in a very small set of stochastic models. Alternatives to fixed-effects estimation

are iterative-structural model estimation or linearizations of the structural model.

Baier and Bergstrand (2009a) deployed such a linearization. While easy to

implement, the approach has drawbacks related to the approximation point and

lack of observability of ingredients needed for the linearization. This compromises

empirical work. The present paper provides a remedy to this problem by linearizing

at the observed trade equilibrium.
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1 Introduction

Since the seminal contributions of Eaton and Kortum (2002) and Anderson and van
Wincoop (2003), the treatment of producer-country and customer-country price
indices as endogenous variables has become important in structural-quantitative
work in trade. Anderson and van Wincoop (2003) proposed a well-known
iterative approach to the problem, which is nonlinear in the structural trade-cost
parameters. Rather than pursuing such iterative-structural estimation, it is now
customary to control for country-(time-)specific endogenous terms by including
high-dimensional fixed effects. The latter usually include at least exporter-time-
and importer-time- and sometimes additionally exporter-importer-fixed effects.

The structural-iterative or high-dimensional-fixed effects approaches had been
used originally in (log-)linear stochastic outcome-equation models. There, the
right-hand-side index of the bilateral-trade outcome equation is – conditional on
exporter-time and importer-time price and income terms or on respective fixed
effects – log-linear in the parameters of observable trade-cost variables such as
geographical distance, ad-valorem trade-cost factors, etc. Since the publication
of Santos Silva and Tenreyro (2006) it became customary to avoid potential
parameter biases of log-linear gravity models by using Poisson pseudo-maximum-
likelihood (PPML) estimation instead. For the latter, Weidner and Zylkin (2021)
established properties and solutions when using high-dimensional fixed effects.

While most applications of gravity models use either (log-)linear regressions or
Poisson pseudo-maximum-likelihood estimation as two special forms of so-called
generalized linear models in conjunction with high-dimensional fixed effects, there
may be reasons for not doing so. In a nutshell, these are the following. First,
a two-way or higher-way fixed-effects model may entail an over-parameterization
of the structural model. The importer-time fixed effects are a nonlinear function
of the exporter-time fixed effects and of trade costs only (see Eaton and Kortum,
2002, or Anderson and vanWincoop, 2003). The number of unknown parameters in
the trade-cost function is typically much smaller than the number of importer-time
fixed effects. Hence, when not imposing structural constraints on the importer-time
fixed effects, one wastes degrees of freedom and estimates too many parameters
relative to the structural model. Employing importer-time-fixed effects may, hence,
lead to upward-biased confidence intervals around the structural parameters of
interest.

Second, tests might reject the distributional assumptions imposed by log-linear
OLS or by PPML (see Egger and Staub, 2013) with consequences for consistency
of the high-dimensional fixed-effects design. Special forms of this case include ones
where the outcome is binary rather than continuous, e.g., with an entry-selection
equation that otherwise adheres to the gravity form (see Helpman, Melitz, and
Rubinstein, 2008). Another case is a fractional model, where bilateral export
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or import shares rather than levels are used (see Papke and Wooldridge, 2008,
for a framework but an application in a non-trade context). Yet another case
are nonparametric models (see Gallo, Marzano, and Simonelli, 2012; Carrère,
Mrázová, and Neary, 2020). Such situations do not permit the estimation with
high-dimensional fixed effects in a straightforward way. Clearly, these and others
are contexts, where structural estimation or an approximation of the fixed effects
through linearization of the structural model are desirable.

Third, the identification of parameters relating to unilateral determinants of
bilateral flows has to separate their impact from that of multilateral resistances
which exhibit unilateral variation only as well. These unilateral variables
relate to non-discriminatory trade policies, exporter specific R&D-expenditures,
productivity, institutions or the quality of government. With structural-iterative
or linearized-model estimation, the impact of these unilateral variables on bilateral
trade flows can then estimated along with the multilateral resistance terms (see
e.g., Francois and Manchin, 2013; Márquez-Ramos, 2016; Bratt, 2017; Sellner,
2019; Barbero, Mandras, Rodŕıguez-Crespo and Andrés Rodŕıguez-Pose, 2021).
High-dimensional fixed-effects estimators, either based on log-linear OLS or on
PPML, are incapable of identifying the parameters of these unilateral variables.

Fourth, iteratively solved or linearized multilateral resistance terms are
sometimes used to construct instruments of trade flows in regressions of outcomes
that depend on trade (see, e.g., Felbermayr and Gröschl, 2013, Clougherty and
Grajek, 2014). Clearly, these instruments could not be simply replaced by fixed
country effects in such contexts.

In a widely-cited contribution, Baier and Bergstrand (2009a) proposed a
linearization of the structural outcome equation of bilateral trade flows as an
elegant way to avoid (i) the structural-iterative estimation of the model parameters
or (ii) the use of high-dimensional fixed effects. Unlike structural-iterative
estimation, this approach can rely on linear one-shot regressions, and unlike high-
dimensional fixed-effects estimation, it does not inflate the number of parameters
to be estimated, it provides parameters on country- or country-time-specific
regressors, and it can be used in nonlinear and even nonparametric estimation.
When taking logs of the model’s right-hand side – and this is done both with log-
linear OLS as well as with PPML – bilateral trade flows can be modelled as to
be additive in observable trade-cost measures (log distance, binary indicators for
common language, history, etc., and log ad-valorem tariff factors) times parameters
and in so-called multilateral resistance terms (see Anderson and van Wincoop,
2003), which depend nonlinearly on trade costs and their parameters. To retain
a (log-)linear estimation framework, Baier and Bergstrand (2009a) linearize the
system of multilateral resistance terms as a function of trade costs and their
parameters. This linearization depends on the sales and expenditure shares of
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all countries.
Due to the isomorphic structure of a host of alternative quantitative trade

models, as outlined in Arkolakis, Costinot, and Rodŕıguez-Clare (2012), the
iterative nonlinear approach is and its linear approximation should be applicable
for estimating the key parameters as well as for enabling counterfactual
equilibrium quantifications of a class of customary, quantitative models of bilateral
international trade. Not surprisingly, the proposed linearization enjoys a high
popularity because of its simplicity. As of March 10 in 2024, Baier and Bergstrand
(2009a) received 940 cites, according to Google Scholar, and the approach is
impactful not only in international economics focused on trade (see Carrère, 2006;
Baier and Bergstrand, 2009b; Egger and Nelson, 2011; Nicita and Hoekman,
2011; Behar and Nelson, 2014; Van der Veer, 2016; Saia, 2017; Afesorgbor, 2019;
Atalay, Hortaçsu, Li, and Syverson, 2019; Atif, Mahmood, Liu, and Mao, 2019;
Baier and Standaert, 2020; Doe Fiankor, Flachsbarth, and Brümmer, 2020) or
migration (Gröschl and Steinwachs, 2020), but also in environmental economics
(see Felbermayr and Gröschl, 2013; Aichele and Felbermayr, 2015), in development
and institutional economics (see Glick and Taylor, 2010; Berger, Easterly, Nunn,
and Satyanath, 2013), in transport economics (see Behar, Manners, and Nelson;
2013; Zhang and Zhang, 2016), in business economics (Blind, Mangelsdorf, and
Pohlisch, 2018), in political science (see Dür, Baccini, and Elsig, 2014), and even
in demography (see Czaika and Parsons, 2017).

The present paper shows that the Bonus-vetus-OLS (BvOLS) linearization of
Baier and Bergstrand (2009a) leads to a systematic approximation bias. The
reason is that the sales and expenditure shares of all countries are not observable
at the approximation point used for the linearization, where trade costs are zero.
Due to the latter, Baier and Bergstrand (2009a) propose using and do use sales
and expenditure shares as observed. The same is true for all applications of this
procedures as cited above. But those shares do not correspond to the free-trade
approximation point. As a result the approximation is biased and it does not even
approximate the nonlinear structural trade model in the approximation point,
where the linearization should not have any error.

As a general rule, linear, one-dimensional approximations of nonlinear functions
involve three bits of information: first, the specification of the full system of
equations to be approximated (with gravity models: the gravity equation and
the balance-of-payments restrictions); second, the magnitude of the difference
in the variable in whose dimension the system is approximated between the
approximation point and the evaluation point (with gravity models: trade costs);
third, the benchmark equilibrium values in which the system is approximated (i.e.,
all exogenous and endogenous variables; with country-pair-level gravity models:
sales and expenditures, prices, and trade costs). Only if all three pieces of
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information are used, the linearized model will be tangential to the nonlinear one
in the approximation point.

However, with BvOLS, only the first two pieces of information are used, but
observed sales and expenditure shares (or GDP shares) are used instead of the
required (unobserved) ones pertaining to the approximation point. This leads
to two problems: first, the approximation error of the model associated with its
linearization is exacerbated for non-zero trade costs; and, second, the linearized
model does not approximate the nonlinear one even in the approximation point.
Hence, BvOLS suffers from two sources of error: the standard linearization error
and the lack of tangentiality of the linearized gravity equation in the approximation
point.1

The present paper provides an alternative linearization of structural gravity
models at the observed trade equilibrium rather than the unobserved free-
trade equilibrium. We demonstrate that this approach avoids the fundamental
approximation error of BvOLS while retaining the simplicity of application and
lacking the limitation of being usable only with log-linear or PPML estimation for
the estimation of parameters and their standard errors. Moreover, this model can
even be used to compute approximated general-equilibrium responses of outcome.

While the general issues addressed above are clearly relevant to the
international trade economist, they matter similarly for regional modellers. Over
the past decades, numerous examples exist for researchers addressing subnational
goods-trade flows between regions along the lines of gravity models (see Polenske,
1963; Black, 1972; Smith, 1987; Anderson and van Wincoop, 2003; Nitsch and
Wolf, 2013; Cai, 2023; Egger, Loumeau, and Loumeau, 2023; or Azoŕın, Mart́ınez
Alpañez, and Sánchez de la Vega, 2024; this list is by no means exhaustive).
However, the relevance goes beyond trade. E.g., there are approaches that address
interregional migration flows with a similar structure, including the examples in
Peeters (2012) or Egger, Loumeau, and Loumeau (2023), and ones for interregional
commuting as in Ahlfeldt (2011) or Monte, Redding, and Rossi-Hansberg (2019).
Importantly, the linearization provided here works for all these problems with the
only difference being that the sales- and expenditure-share variables in trade-flow

1Baier and Bergstrand (2010) propose a variant of their linearization approach. However,
the associated approximation point is one, where not only all (foreign and domestic) bilateral
trade costs are symmetric but also all countries’ endowments (and, hence, prices and GDPs) are
symmetric. The approximation points in Baier and Bergstrand (2009a, 2010) are very distant
from real-world data. Therefore, neither approach in Baier and Bergstrand (2009a, 2010) is
well suited to predict the trade consequences of even small discrete changes on trade flows.
However, while the customary approach in Baier and Bergstrand (2009a) suffers from a bias in
the trade-cost-parameter estimates, this bias is absent in the approach of Baier and Bergstrand
(2010). Moreover, the variant in Baier and Bergstrand (2010) shares the property with the
high-dimensional fixed-effects estimator that parameters on country- or country-time-specific
trade-cost variables cannot be identified.
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gravity models would have to be replaced by other ratios suggested by economic
theory (those would be resident ratios or resident and worker ratios relative to all
regions, respectively).

In the subsequent section, we outline the model preliminaries underlying the
BvOLS linearization. We introduce a correct linearization of the model and
compare it with the BvOLS version. Section 3 addresses the estimation bias with
BvOLS and envisages the quantification of counterfactual trade-shock responses.
Section 4 provides an illustration of various biases addressed in earlier sections
using real-world trade data. The last section concludes with a short summary of
the main findings.

2 The Nonlinear System and Its Linearizations

2.1 The Gravity Model

The class of trade models of interest here are ones, where deterministic aggregate
bilateral exports from country i to j, Xij, can be formulated as:2

X̃ij ≡ Xij/Y = eαtijκiΠ
−α
i θjP

−α
j . (1)

Trade flows are normalized by world aggregate sales, Y =
∑N

i=1 Yi =
∑N

j=1Ej, with
Yi and Ej being country-level aggregate sales and expenditure value, respectively.

κi = Yi

Y
denotes the sales share of country i in the world, and θj =

Ej

Y
is the

expenditure share of country j, respectively. α < 0 is often referred to as the trade
elasticity.3 This formulation is more general than the one considered by Baier and
Bergstrand (2009a), since it allows for country-specific trade imbalances. However,
this will be immaterial to the key arguments below. The terms on the right-
hand side of equation (1) measure the exponentiated direct effect of log bilateral,
potentially asymmetric ad-valorem trade costs on exports from i to j, tij, the sales
and expenditure shares introduced above, κi and θj, and the exporter and importer
price indices or multilateral trade resistance terms, Π−α

i and P−α
j , respectively, as

introduced by Anderson and van Wincoop (2003). In a world with N countries, the

2Arkolakis, Costinot, and Rodŕıguez-Clare (2012) show that not only endowment-economy
models as the one of Anderson and van Wincoop (2003), but also other ones such as Eaton
and Kortum (2002) type Ricardian models, Krugman (1980) type models, or Chaney’s (2008)
parametrizations of Melitz (2003) type models can be represented in this way.

3In Armington models à la Anderson and van Wincoop (2003) or Dixit-Stiglitz-Krugman
models with monopolistically competitive firms α = 1 − σ and σ denotes the elasticity of
substitution between varieties. In Eaton and Kortum (2002) type models α = −θ, where θ
measures the dispersion of productivity among perfectly competitive suppliers. In any case, α
may be referred to as the partial effect (or the direct elasticity) of normalized bilateral trade
flows (exports or imports) with respect to ad-valorem trade costs.
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latter are defined – through utility maximization and multilateral market-clearing
conditions – as

Pα
j =

N∑
i=1

eαtijκiΠ
−α
i , Πα

i =
N∑
j=1

eαtijθjP
−α
j , i, j = 1, ..., N.

Trade frictions in logs are collected in the N2 × 1 vector t = (tij) with
corresponding parameter α.4 The N2 × 1 vector x̃(t) has typical elements ln(X̃ij)
and denotes world-sales-normalized bilateral exports in logs. Sales and expenditure
shares are collected in the N × 1 vector κ(t) and the (N − 1)× 1 vector θ(t) with
typical elements κi ≡ κi(t) and θj ≡ θj(t), respectively. This notation emphasizes
that both depend on the trade frictions and, since trade may be unbalanced, they
may differ from each other. For the derivations below, it will be useful to define
µi(t) ≡ ln (κi(t)Πi(t)

−α) and mj(t) ≡ ln (θj(t)Pj(t)
−α), capturing the unilateral

exporter and importer country-specific elements of the gravity model.
In an economy with endowment Ai of country i and in the absence of any

country-specific Armington-type preference bias, sales shares obey

κi(t) =
e

1
α
µi(t)Ai∑N

k=1 e
1
α
µk(t)Ak

. (2)

There, k defines the running index of countries in the sum entering the
denominator. This result uses the fact that the mill (or factory-gate) price in

equilibrium can be written as pi = µ
1/α
i . Moreover, world-sales-normalized exports

can be expressed as

X̃ij(t) ≡
Xij(t)

Y
= exp(αtij + µi(t) +mj(t)).

Upon normalizing m1(t) = 0, bilateral trade flows adhere to the implicit-function
system of multilateral resistances as introduced by Anderson and van Wincoop
(2003):  ∑N

i=1 e
αtij+µi(t)+mj(t) − θj(t), j = 2, ..., N

...∑N
j=1 e

αtij+µi(t)+mj(t) − κi(t), i = 1, ..., N

 = 0. (3)

The system of trade-resistance terms comprises 2N − 1 interdependent variables
(µi(t) and mj(t)) and as many equations.

4We concentrate on a model where tij is parameterized by a single explanatory variable
to simplify notation. However, introducing several explanatory variables behind tij is
straightforward. Then, we could think of the trade-cost function in logs to consist of K elements
as αtij =

∑K
k=1 ζkzk,ij . The parameter the researcher would estimate on observable trade-

cost measure zk,ij is ζk = αδk (see Anderson and van Wincoop, 2003, and Pfaffermayr, 2020).
In the latter, the parameter δk translates observable trade-cost measures into log ad-valorem
equivalents.
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2.2 Linearizing the Generic Structural Gravity Model

For the linearization of the above system we need to determine the point at which
to linearize. We use subscript a to refer to this approximation point. Below we will
consider several different approximation points with the generic subscript a taking
on different values. As will become clear, this is of utmost importance here in
order to not confuse variables and parameters relating to different approximation
points. We use a to index all variables which are specific to the approximation
point, namely the vector of trade costs ta, normalized exports x̃a ≡ x̃(ta), sales
and expenditure shares κa ≡ κ(ta) and θa ≡ θ(ta), respectively, and µi,a ≡ µi(ta)
and mj,a ≡ mj(ta). Apart from elements κi,a ≡ κi(ta) and θj,a ≡ θj(ta), the latter
depend on the multilateral resistance terms Π−α

i,a ≡ Πi(ta)
−α and P−α

j,a ≡ Pj(ta)
−α.

We set P−α
1,a = 1/θ1,a as the numéraire, and the equation referring to country 1 as

an importer in the system of trade resistances has to be skipped.
Proposition 1 describes the linear approximation of the system of resistance

terms and the approximation error. Details on the proof are provided in the
Appendix.

Proposition 1. The linear approximation of the system of multilateral resistances
(3) at trade costs ta with ∆ta = t− ta allows to write log-normalized exports x̃(t)
as

x̃(t) = x̃L(t, ta) + r̃(t, ta),

where

x̃L(t, ta) = x̃a + αQa∆ta

r̃(t, ta) = −D (D′GaD)
−1

r(t, ta),

and Qa = I − Pa, Pa = D (D′GaD)−1D′Ga and Ga = diag(X̃ij(ta)). I denotes
the identity matrix of size N2 and the N2 × (2N − 1) design matrix D collects
the binary importer- and exporter-country dummy variables. Lastly, the 2N − 1
vector r(t, ta) denotes the approximation error of the linearization of the system
of multilateral resistance terms.

The linear approximation involves an asymmetric, weighted projection matrix
Pa that projects on the exporter and importer country dummy variables collected
in D. At any weight X̃ij,a inserted in the diagonal matrix Ga, it holds that
PaD = D and QaD = 0. Hence, the linear approximation transforms the right-
hand side variables of the gravity equation, here ∆ta, by a weighted two-way within
transformation. Note that in linear two-way panel models Ga is an identity matrix
and Pa =D(D′D)−1D′ is symmetric and idempotent (see Baltagi, 2021, chapter
3). In contrast, for a general weighting matrix Ga, Pa is not symmetric and not
idempotent.
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The approximation error of the linearized gravity equation, r̃(t, ta), is induced
by the linearization of the system of multilateral resistances. In the Appendix
we show that this error translates into the approximation error of the gravity
equation as −D (D′GaD)−1 r(t, ta). Since the leading term in the last expression
is the dummy matrix D, the linearization error of the gravity equation, r̃(t, ta) ,
exhibits unilateral variation only and Qar̃(t, ta) = 0.

2.3 Baier and Bergstrand’s BvOLS Linearization

Baier and Bergstrand (2009a) linearly approximate the system of multilateral
resistances at the point where trade costs are identical across all country pairs
(including i = j). Using the subscript a = BB for this case, tij,BB = t for all
i and j.5 Unlike Baier and Bergstrand (2009a), let us use κi,BB ≡ κi(tBB) and
θj,BB ≡ θj(tBB) to indicate the sales and expenditure shares which pertain to that
approximation point in equilibrium.6

In their equations (15)-(21), Baier and Bergstrand (2009a) derive the
approximation of equation (1) under the equilibrium restrictions of multilateral
resistances (3) as

ln eαtijΠ−α
i P−α

j ≈ α (tij − t) (4)

+α

[
−

(
N∑
k=1

θk (tik − t)

)
−

(
N∑
k=1

κk (tkj − t)

)
+

(
N∑
k=1

N∑
l=1

κkθl (tkl − t)

)]
,

which does not conform to Proposition 1. The reason is that observed data on
κi ≡ κi(t) and θj ≡ θj(t) are used instead of ones related to the approximation
point. Note that the system of multilateral resistances (3) is fulfilled at trade costs
tBB only when being combined with the (unobserved) associated equilibrium sales
and expenditure shares κi,BB and θj,BB.

In case of a linear approximation in one dimension, here tij, all other variables
must be measured at the approximation point of the system in order for the linear
approximation to be tangential to (i.e., have the same solution as) the nonlinear
model at the approximation point. With BvOLS, this is the point where tij,BB = t
for all i and j. Due to a lack of knowledge of κi(tBB) and θj(tBB), Baier and
Bergstrand (2009a) and all applications thereof used observed values κi(t) and θj(t)
instead of the unobserved κi(tBB) and θj(tBB). This entails a source of bias beyond
the approximation bias following from the linearization as such. The mentioned

5At symmetric trade costs tij,BB = t for all i and j including j = i, trade is the same at
positive trade costs with t > 1 as under free trade with t = 1.

6Note that the sales and expenditure shares will not be identical across countries due to
endowment differences; see equation (2). Hence, differences in sales, expenditures, and exports
across countries will prevail also in the absence of trade frictions.
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bias depends on the actual variance in trade costs and other fundamentals across
countries and country pairs.7

Since Baier and Bergstrand (2009a) use sales and expenditure shares measured
at t ̸= tBB, they introduce an additional bias beyond the remainder standard
linearization error as the following corollary shows.

Corollary 1. The BvOLS-approximation
Using the observed sales and expenditure shares κi(t) and θj(t), the approximation
by Baier and Bergstrand (2009a) with subscript BvOLS can be written as

x̃L,BvOLS(t, tBB) = x̃BvOLS + αQBvOLS∆tBB

r̃BvOLS(t, tBB) = (x̃BB − x̃BvOLS) + α (QBB −QBvOLS)∆tBB + r̃(t, tBB)

where x̃BvOLS = diag(ln(κi(t)θj(t))). GBvOLS = diag(κi(t)θj(t)) is used to
form the projection matrix QBvOLS. Lastly, r̃BvOLS(t, tBB) = x̃(t, tBB) −
x̃L,BvOLS(t, tBB). Thereby terms with subscript BB refer to the theory consistent
linear approximation at tBB = tιN2 as derived in Proposition 1. ιN2 denotes an
N2 × 1 vector of ones.

As shown in the Appendix the linearization bias of BvOLS can be derived using
Proposition 1 to split up observed exports into the summed linearized component,
x̃L(t, tBB), and the approximation error r̃(t, tBB). Subtracting x̃L,BvOLS(t, tBB)
yields the BvOLS-approximation as described in the Corollary.

Log normalized exports at the point of approximation differ between BvOLS
and the suitably linearized model at tij,BB = t (x̃BvOLS vs. x̃BB), as do the
projection matrices (QBvOLS vs. QBB). Consequently, neither the approximated
trade flows nor the Jacobian of the system of multilateral resistances coincide with
their true counterparts of the nonlinear system of multilateral resistances at the
point of approximation under BvOLS. Thus, BvOLS does not provide a proper
linearization at this point (see Judd, 1998, p. 449). As a result, comparative
statics based on the BvOLS model will be biased as well.

7See the introduction for a selection of BvOLS-applications. The simulations in Bergstrand,
Egger, and Larch (2013) already indicate that there is a nontrivial bias about the BvOLS-
approximation when being used for comparative static analysis. In their Table 1, these authors
document that there is a trade-cost parameter bias in their BvOLS-2 model, which is exactly the
model of Baier and Bergstrand (2009a). In the same table, they report that this bias is absent for
what they call BvOLS-1, which is the model of Baier and Bergstrand (2010), avoiding sales- and
expenditure-share weights. This is not surprising, as that model is the same as a two-way within
estimator (but only for the right-hand side of the model). What we document here, and as is
well known, is that BvOLS-1 in Bergstrand, Egger, and Larch (2013) leads to biased standard
errors as, unlike the within estimator, the dependent variable is not transformed. Moreover, we
show in the present paper that this so-called BvOLS-1 estimator is only suited for parameter-
point estimation but not for counterfactual analysis, as it uses identical weights for all countries,
irrespective of how large they are.
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2.4 A Two-country Example

For the sake of transparency and illustration, let us assume a world of two
economies {i, j} = {1, 2} which have zero domestic trade costs, tii = 0, and
symmetric international trade costs, tij = t for i ̸= j. With one-sector endowment
economies, GDP is defined as Yi = piAi, where pi is the price per unit of endowment
Ai, as charged by the selling country i.8 We choose country 1’s mill price as the
numéraire (p1 = 1). To give an example, normalized exports from country 1 to
country 2 the BvOLS-approximation at tBB = 0 for all i, j yields

x̃12,BB − lnκ1,BBθ2,BB = αt12 − α

2∑
k=1

θk,BBt1k − α
2∑

k=1

κk,BBtk2

+ α

2∑
i=1

2∑
k=1

κi,BBθk,BBtik

= α (1− θ2,BB − κ1,BB + κ1,BBθ2,BB + κ2,BBθ1,BB) t.

x̃12,BvOLS − lnκ1θ2 = αt12 − α
2∑

k=1

θkt1k − α
2∑

k=1

κktk2 + α
2∑

i=1

2∑
k=1

κiθktik

= α (1− θ2 − κ1 + κ1θ2 + κ2θ1) t.

Under symmetric country sizes and balanced trade, κj = κj = 0.5 and κi = θi,
this reduces to

x̃12,BB − lnκ1,BBθ2,BB = αt,

x̃12,BvOLS − lnκ1θ2 = αt.

Hence, at perfect symmetry, the BB- and BvOLS-linearizations are identical. Note
that this is not the case under asymmetry regarding the sales and expenditure
shares at free trade.

The nonlinear gravity model implies

x̃12,AvW = αt12 + lnµ1(t) + lnm2(t)

x̃12,AvW − lnκ1,aθ2,a = αt12 + ln
(
Π1(t)

−αP2(t)
−α
)

and it requires numerically solving the system of multilateral resistances to obtain
µ1(t) and m2(t).

8Recall that we consider the case, where the preference parameter called βi in equation (7)
in Anderson and van Wincoop (2003) is unity for both countries. Accordingly, we obtain the
relationship that α ln pi(t) = lnµi(t).
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Figure 1: The BvOLS-approximation in a two-country example I

Notes:

BB ... approximation using trade costs tBB and (empirically unobserved) sales and expenditure shares

{κi,BB , θj,BB} pertaining to the approximation point. BvOLS... approximation using trade costs tBB

and (inappropriately) the observed sales and expenditure shares {κi, θj} pertaining to t ̸= tBB . EP1 ...

linearization at observed trade costs t ̸= tBB and at observed {κi, θj} but (inappropriately) assuming that

these shares do not endogenously adjust to changes in t . EP2 ... as EP1 but allowing {κi, θj , } to adjust

with changing international trade costs, t.

Figures 1-2 illustrate the analytical results for this two-country world under the
aforementioned assumptions about trade costs. We present two figures with three
panels each to illustrate that the bias we address fundamentally depends on three
things (apart from endowments): (i) the level of t; (ii) the gap between the sales
and expenditure shares accruing to the approximation point BB and associated
with tBB, {κi,BB, θj,BB}, for all {i, j} = {1, 2} versus the observed ones used by
BvOLS and associated with t = tBvOLS ̸= tBB, {κi, θj};9 and (iii) the level of the

9The difference in international versus domestic trade frictions.
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trade elasticity, α.
We consider two configurations each of exp(t) ∈ {1.15, 1.35} and α ∈ {−5,−2}.

In each figure, we present four schedules: BB for the approximation using
the (empirically unobserved) sales and expenditure shares pertaining to the
approximation point {κi,BB, θj,BB}; BvOLS for the BvOLS-approximation which
uses the observed {κi, θj} instead of – for a bias-free approximation – the required
{κi,BB, θj,BB}; EP1 for the linearization at observed trade costs and compatible
sales and expenditure shares but (inappropriately) assuming that these shares
{θi, κi} do not endogenously adjust to changes in t; and EP2 which on top of EP1

allows {θi, κi} to adjust to changing international trade costs, t.10 In all figures, we
plot differences between the respective model prediction of log normalized exports
of country 1 to country 2, x̃12,model, where model ∈ {BB,BvOLS,EP1, EP2}, as a
difference to the solution of the true, nonlinear Anderson and van Wincoop (2003)
model, x̃12,AvW .

Let us first discuss the results in Figure 1. Clearly, we see that the difference
x̃12,model− x̃12,AvW depends in an important way on the model type. By design, the
intercept is zero for the true Anderson and van Wincoop (2003) model. The models
EP1 and EP2 touch or intersect, respectively, at their approximation point. The
BB-model touches (is identical to) the AvW model at the point exp(tij,BB) = 1 for
{i, j} = {1, 2}, another point than the EP models. Any level of x̃12,BB − x̃12,AvW

to the right of exp(tij,BB) reflects the true approximation bias of a hypothetical
model which relates to the linearization of a nonlinear relationship at otherwise
true parameters at tij,BB = 0 for {i, j} = {1, 2}.

Now inspectmodel = BvOLS as used in practice due to the lack of observations
of κi,BB and θj,BB. First of all, this model does not touch the true nonlinear
(AvW) model at the point tij,BB = 1 for {i, j} = {1, 2}. Hence, BvOLS is not
tangential to the nonlinear function at the alleged approximation point. In fact,
BvOLS approximates the nonlinear function best (intersects with it) at some
unknown point tb, where tBB < tb < t. In any case, BvOLS suffers from a
bias beyond the linearization-related approximation bias which purely comes from
using {κi, θj} instead of {κi,BB, θj,BB} in the linearization. The vertical difference
x̃12,BB − x̃12,AvW | exp(t) = 1.15 purely reflects the true linearization bias, whereas
x̃12,BvOLS − x̃12,AvW | exp(t) = 1.15 reflects a conglomerate of the linearization bias
and the bias from using {κi, θj} instead of {κi,BB, θj,BB}. Interestingly, the use of
the inappropriate sales and expenditure shares counteracts the pure linearization
bias of the BB model to some extent.

Both types of linearization proposed here, EP1 and EP2, pertain to the point
where international trade costs are as realized at exp(t) = 1.15 and sales and
expenditure shares are observed at {κi, θj} at this point. The outcome is x̃12,model−

10See Appendix A.5 for details on this approximation.
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x̃12,AvW = 0 in this point for either one of these linearizations. There is a slight
difference in the slope of the two schedules: x̃12,EP1−x̃12,AvW has a minimum in the
realization point exp(t) = 1.15, while x12,EP2 −x12,AvW is rotated counterclockwise
and does not have a minimum at realization points of t > 1. For any model ∈
{BB,BvOLS}, x̃12,model − x̃12,AvW increases at the realization point {tij, κi, θj}
as we increase trade costs from exp(t) = 1.15 in Figure 1. Model EP1 then
generally fares better than all other approximations (including EP2). However,
when reducing trade costs from exp(t) = 1.15 in Figure 1, there is a region in the
neighborhood of et, where EP2 outperforms EP1. At very low trade costs, model
BB, and at medium-low trade costs BvOLS, may eventually fare better than EP1.
However, the latter is only due to the nonlinear behavior of linearization biases
as we move far away from the approximation point – which involves an additional
bias of the BvOLS model.

If realized international trade costs are exp(t) = 1.15 as in Figure 1 but
α = −5 instead of α = −2, the linearization biases become generally larger at
sufficiently high values of t. Also the bias involved with BvOLS becomes larger at
the (unobserved) approximation point where exp(tBB) = 1 for {i, j} = {1, 2}.

In Figure 2, we conduct the same exercises as in Figure 1, but we set realized
international trade costs for i ̸= j at exp(t) = 1.35 instead of at exp(t) = 1.15. A
comparison of Figure 2 with Figure 1 suggests that the linearization bias of BB
and the combined bias of BvOLS become larger in a relatively larger neighborhood
around the realized log trade costs as et increases.

On a general note, the intercept of the two EP models at et = 1 is lower
than that of either BB or BvOLS at et = 1.15 in Figure 1 or et = 1.35 in Figure 2.
Hence, the approximation of the implied change of trade costs ∆t = tij−0 is closer
to the true model under EP than the BB or BvOLS models. The model that fares
the worst among all in the two figures in terms of the gap in the function values
evaluated at et = 0 versus et = 1.15 or et = 1.35 is BvOLS. However, BvOLS’s
intercept at realized trade costs is lower than that of BB due to the negative bias
at et = 1.
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Figure 2: The BvOLS-approximation in a two-country example II

Notes:

BB ... approximation using trade costs tBB and (empirically unobserved) sales and expenditure shares

{κi,BB , θj,BB} pertaining to the approximation point. BvOLS... approximation using trade costs tBB

and (inappropriately) the observed sales and expenditure shares {κi, θj} pertaining to t ̸= tBB . EP1 ...

linearization at observed trade costs t ̸= tBB and at observed {κi, θj} but (inappropriately) assuming that

these shares do not endogenously adjust to changes in t . EP2 ... as EP1 but allowing {κi, θj , } to adjust

with changing international trade costs, t.

3 BvOLS- and EP1-model Parameter Estimates and

Model Predictions

The following table provides an overview on the various models and the acronyms
considered in this paper.
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Table 1: Synopsis of considered models

Model (o) Source Lineari- Approximation Approximation Note
zation point

AvW AvW (2003) no none none a)
BB This paper yes MR free trade b)
BvOLS BB (2009a) yes MR mix free trade/obs. c)
w 2-way within no none none d)
EP1 This paper yes MR obs. e)
EP2 This paper yes MR and income obs. f)

Notes: obs.... observed, MR... multilateral resistance terms.
a) The AvW model estimates trade-cost parameters conditional on multilateral resistance (MR) terms,
updates the latter based on the parameters, re-estimates parameters conditional on updated MR terms, etc.,
until convergence. The approach may be, hence, referred to as one of structurally-iterative estimation.
b) The BB model is the same as BvOLS but it uses the unobservable sales and expenditure shares
{κi,BB , θj,BB} pertaining to the free-trade equilibrium for weighting the log trade costs tij,BB . This is
why it is infeasible to do (without simulating the equilibrium model).
c) BvOLS is the incorrectly linearized model that uses free trade with log trade costs tij,BB as the
approximation point but observed sales and expenditure shares {κi, θj} for weighting in the linearization.
The latter shares are incompatible with the free-trade equilibrium.
d) The model w is the within estimator which corresponds to a two-way (exporter- and importer-)fixed effects
estimator in cross section. This obtains identical parameters to the Baier and Bergstrand (2010) version of
BvOLS, which uses 1/N instead of {κi, θj} as weights in the linearized MR terms. This model obtains
consistent trade-cost parameters but inconsistent standard errors. It keeps the multilateral resistance terms
fixed (as fixed effects) in counterfactual equilibrium.
e) EP1 is the linearized model at the observed trade equilibrium, where the observable sales and expenditure
shares {κi, θj} are consistent with the log trade costs tij and the equilibrium trade flows. It delivers consistent
trade-cost parameters and can be used for counterfactual analysis. Only the multilateral resistance terms
are linearized, whereas {κi, θj} are held fixed.
f) EP2 is a variant of EP1, where also {κi, θj} responses to changes in trade costs are considered. It is also
linearized at the observed trade equilibrium, where observable {κi, θj} are consistent with tij . It delivers
consistent trade-cost parameters and can be used for counterfactual analysis.
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The econometric specification of the right-hand side of the linearized gravity
model comes in logs and augments the systematic part with additive, independent
disturbances εij, which might be heteroskedastic. Trade barriers are assumed to
be exogenous so that E[εij|t,κ,θ] = 0.11 Thus, only exports, but neither trade
barriers nor sales or expenditure shares are measured with error, and the system
of multilateral resistances holds in expectation as in Anderson and van Wincoop
(2003). The true data-generating process can then compactly be described by the
empirical model

x̃(t) = αt+D

[
m(t)
µ(t)

]
+ ε.

where µ(t) and m(t) solve the system of multilateral resistances (3). The
BvOLS-vector of disturbances is denoted by εBvOLS and it includes the remainder
approximation error.

The approximated, econometric BvOLS-model in logs reads12

∆x̃BvOLS = x̃(t)− x̃BvOLS = αQBvOLS∆tBB + εBvOLS,

where x̃BvOLS has typical element lnκi(t)+ ln θj(t) and ∆tBB has typical element
tij − tBB. The following proposition is proven in the Appendix.

Proposition 2. (i) The BvOLS estimate α̂BvOLS and its deviation from the true
parameter α are given by

α̂BvOLS = H−1
BvOLS∆t′BBQ

′
BvOLS∆x̃BvOLS.

α̂BvOLS − α = H−1
BvOLS∆t′BBQ

′
BvOLS [̃rBvOLS(t, tBB) + ε] ,

where we define HBvOLS = ∆t′BBQ
′
BvOLSQBvOLS∆tBB.

(ii) Under exogenous trade barriers, the bias of α̂BvOLS is given as

BiasBvOLS ≡ E[α̂BvOLS − α|t,κ,θ]
= H−1

BvOLS∆t′BBQ
′
BvOLS r̃BvOLS(t, tBB) ̸= 0,

(iii) The unweighted BvOLS estimator of α with subscript w uses Gw = IN2, an
N2 ×N2 identity matrix to form the projection matrix Qw, and it is unbiased.
(iv) Assuming that the disturbances are independent but heteroskedastic with
diagonal variance-covariance matrix Ωε, it follows that

E[(α̂BvOLS − α−BiasBvOLS)
2|t,κ,θ]

= H−1
BvOLS∆t′BBQ

′
BvOLSΩεQBvOLS∆tBBH

−1
BvOLS.

11A modification of the approach to include endogenous trade-cost variables would be
straightforward and could follow a customary instrumental-variables approach.

12Baier and Bergstrand (2009a) use ∆x rather than normalized trade flows ∆x̃ and include a
constant to account for total world expenditures. This constant implicitly absorbs the average
approximation error in addition to log world GDP.
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This proposition shows that the BvOLS-approximation does not lead to an
unbiased estimator of the trade-elasticity parameter α. The reason lies in the
usage of the asymmetric projection matrix QBvOLS with Q′

BvOLS ̸= QBvOLS,
so that Q′

BvOLSQBvOLS ̸= QBvOLS and Q′
BvOLSD ̸= 0. It follows that

Q′
BvOLSrBvOLS(t, tBB) ̸= 0 as well. Generally, there is no possibility to estimate

the size of the bias in order to establish a bias-corrected estimator of α under
BvOLS without solving the nonlinear system of multilateral resistance terms.

However, at Gw = IN2 this asymmetry disappears, since the projection matrix
is now given by Qw = I − D(D′D)−1D′, which is symmetric and idempotent.
It is straightforward to verify (see the Appendix) that Qwr̃BvOLS(t, tBB) = 0.13

The latter approach has been proposed by Baier and Bergstrand (2010, p. 103),
who consider the approximation of the system of multilateral resistances at a fully
symmetric world where all countries exhibit the same size (GDP) and trade costs
are identical (including for domestic sales). This eliminates the approximation
error at the approximation point. However, this approximation point is highly
unrealistic from an economic theory point of view and large approximation errors
of predicted trade flows have to be expected, when applying it with real-world data.
The reason is that countries differ starkly in their GDPs (compare Liechtenstein
or Belgium with China or the United States) as well as in trade costs (compare
the average distance of Austria versus that of Australia to other countries).
However, the (sales-and-expenditure-share-) unweighted approach is useful at least
for estimation, as it avoids the bias in the trade-elasticity parameter, unlike the
BvOLS-approach of Baier and Bergstrand (2009a). Lastly, the proposition also
suggests that, besides yielding biased estimates, under BvOLS the estimated
standard errors of α̂BvOLS and inference will be incorrect as well.

Consider a counterfactual change in the trade frictions of t to tc and assume
that both the base and counterfactual are predicted with BvOLS (i.e., both are
based on the linearization at tBB = tιN2). With BvOLS, neither approximated
trade flows nor the Jacobian coincide with their counterparts of the nonlinear
system of trade resistances at the point of approximation, which is the baseline
prediction of observed trade flows both for the base and the counterfactual. As a
result, comparative statics based on BvOLS will be biased as well.

With the EP1 model, we predict the bilateral trade flows with a linearization
at observed trade costs t, using the unbiased within estimator and the estimated
fixed effects to estimate the normalized multilateral resistance terms, i.e., the
approximation point at x̃ij,EP1 = α̂wtij+µ̂i(t)+m̂j(t). The typical element, X̃ij,EP1 ,
is readily available from country-fixed-effects estimation and can be estimated
by the predicted trade flows under observed trade frictions. In this case, GEP1

= diag(X̃ij,EP1) is used to form the projection matrix QEP1 . We suspect that

13In this setting, the assumed trade and expenditure shares each amount to 1/N .
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the approximation bias of any comparative static change in trade costs in the
vicinity of what is observed will be smaller than that obtained under the BvOLS-
approximation. Specifically, at ta = t the approximation error disappears and the
prediction of the observed baseline trade flows is free of any approximation error.

Ignoring the associated change in sales and expenditure shares in a first step,
the following corollary shows the prediction error of the counterfactual change
in trade flows induced by the BvOLS-linearization of the system of multilateral
resistances.

Corollary 2. Counterfactual prediction
Denote the vector of counterfactual trade frictions by tc and the observed ones by
t.
(i) The expected prediction error of the counterfactual change in log exports under
BvOLS amounts to

E
[(̂̃xc

BvOLS − ̂̃xBvOLS

)
− (x̃c − x̃) |t, tc,κ,θ

]
= QBvOLS (t

c − t)BiasBvOLS − r̃BvOLS(t
c, tBB) + r̃BvOLS(t, tBB).

(ii) Approximating at observed trade costs t with the EP1 model, the expected
prediction error is

E
[(̂̃xc

EP1
− ̂̃xEP1

)
− (x̃c − x̃) |t, tc,κ, θ

]
= −r̃(tc, t).

The BvOLS-prediction for both the base and counterfactual uses the same
approximation point and it is prone to two approximation errors, r̃BvOLS(t

c, tBB)
and r̃BvOLS(t, tBB). In addition, it suffers from a biased estimate of the trade
friction parameter, α̂BvOLS (or the parameter vector on observable trade-cost

measures, ζ̂BvOLS = (α̂δ)BvOLS). As a result, neither the trade flows corresponding
to the base nor those in the counterfactual obey the equilibrium conditions imposed
by the system of trade resistances.

The second part of the corollary indicates that predicting both base and
counterfactual based on the unbiased within estimator of α, α̂w (or ζ̂w) for
observable trade-cost measures), and linearizing the counterfactual prediction in
the base at observed trade costs t is a preferable alternative (using subscript EP for
the aforementioned approximation). This approximation uses a different within-

projection matrix from BvOLS, namely one that is based on GEP1 = diag(
̂̃
XEP1).

FormingQEP1 is straightforward. The corollary shows that the expected prediction
error of the EP1 approximation only includes one term, namely the approximation
error of the counterfactual −r̃(tc, t). We presume that the expected prediction
error is smaller than that under BvOLS.
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To sum up, BvOLS suffers from two biases, an approximation bias and a
parameter-estimation bias. Monte Carlo simulations can illustrate their relative
magnitude in real-world data situations.

4 Monte Carlo Simulations Based On Real-world Data

We use data on aggregated exports of manufactured goods among N = 42
countries from WIOD for the year 2012. We consider trade frictions such as
distance, contiguity and common language from CEPII (see Mayer and Zignago,
2011) and information on membership in regional trade agreements (RTAs) from
Mario Larch’s Regional Trade Agreements Database described in Egger and Larch
(2008).14

In a first step, we use this database to set up the data-generating process (DGP)
underlying the Monte Carlo simulations below. Specifically, we use a Poisson
pseudo-maximum-likelihood model with fixed exporter and importer effects and
a log-additive trade-cost function to generate true trade costs from the export
data. This obtains the conditional mean as well as the residuals. We draw from
a stochastic process to generate the disturbances in 20, 000 Monte Carlo samples,
always using the same conditional mean. We then assess the average bias and
root mean-squared error of specifically of BB and BvOLS, and compare them to
the true-by-construction, nonlinear AvW-estimator and the within (fixed-country-
effects) estimator in a controlled environment that mimics the real world. Thereby
we focus on statistics about the parameters of the variables in the trade-cost
function.

In a second step, we investigate the predictive performance of BB and BvOLS
both for baseline trade flows and for ones associated with counterfactually changed
trade costs, highlighting the effects of a reduction in ad-valorem trade costs. For
comparison, we use the average of the simulated parameter estimates for each
estimator based on the 20, 000 Monte Carlo draws.

In order to obtain a true model for the DGP against which the linearization
bias can be measured, we first estimate the following standard gravity model by

14Among the trade-cost variables, Log distanceij , the great-circle distance between countries
i and j, is the only continuous measure. All other variables are binary indicators. Borderij
is a dummy that is unity, if trade flows cross the country border (i ̸= j), and zero otherwise
(i = j). Contiguityij indicates whether two countries i and j ̸= i have a common land border or
not. Common languageij indicates a common official language between countries i and j ̸= i.
Finally, RTAij indicates membership in the same preferential trade agreement for countries i
and j ̸= i. For domestic sales (i = j), all binary indicators are coded as zero. Log distanceij
assumes the (non-zero) value provided in the CEPII data for domestic sales.
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Poisson pseudo-maximum likelihood (PPML):

X̃ij = exp(z′ijζ + βi + γj + εij), (5)

where the explanatory trade-cost variables are collected in the vector zij, and ζ
denotes the corresponding parameter vector.

By design,
∑N

i=1

∑N
j=1 X̃ij = 1. PPML-estimation with fixed exporter and

importer effects implies that the predicted values are consistent with the system
of multilateral resistances specified as

κi =
N∑
j=1

exp(z′ij ζ̂ + β̂i + γ̂j) (6)

θj =
N∑
j=1

exp(z′ij ζ̂ + β̂i + γ̂j) (7)

with eβ̂i = κiΠ̂
−α
i , eγ̂j = θjP̂

−α
j and

P̂α
j =

N∑
i=1

exp(z′ij ζ̂)κiΠ̂
−α
i , j = 2, ..., N

Π̂α
i =

N∑
j=1

exp(z′ij ζ̂)θjP̂
−α
j , i = 1, ..., N.

Taking the estimates of ζ as the true values and augmenting the gravity model
with a stochastic disturbance term εij gives the gravity specification in logs that
will be used as the DGP in the subsequent 20, 000 Monte Carlo simulations :

x̃ij = z′ij ζ̂ + β̂i + γ̂j + εij = x̃∗
ij + εij. (8)

We follow Borusyak, Jaravel, and Spiess (2021) to use the wild bootstrap to
design the DGP of the disturbances. The main advantage of the wild bootstrap lies
in its ability to mimic the distribution of the unobserved disturbances in empirical
applications in a very realistic way.15 First, we postulate

εij = eijξij.

15In an alternative setting we considered, the disturbances εij were a random draw from the

normal distribution with mean 0 and variance σ2
ij = exp(0.25dij)/N

−2
∑N

i=1

∑N
j=1 exp(0.25dij)),

where dij denotes the log distance between countries i and j, to make the disturbances
heteroskedastic. The average of σij was normalized to 0.72 to match the average standard
error of the wild bootstrap disturbances. The respective Monte Carlo simulation results are very
similar to the ones in focus here and reported in the Appendix B.
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where eij denotes the OLS residuals of the gravity model in logs with fixed exporter
and importer effects as defined in equation (8). In the next step we specify the wild
bootstrap disturbances (see Hansen, 2022). We hold eij as well as the explanatory
variables, zij, and the corresponding multilateral resistance terms fixed in repeated
samples across the 20, 000 Monte Carlo runs. In each run we draw ξij from the
Rademacher distribution with ξij, taking the values 1 and −1 with probability
1/2, respectively. This implies that E[ξij] = 0 and V ar[ξij] = 1. The conditional
variance of εij is thus V ar[εij|eij] = e2ij and reflects the pattern of heteroskedasticity
in the stochastic gravity model.

Table 1 reports on the approximation errors of the BB- and BvOLS-
approximations of the systematic part of the structural gravity model at true
parameters as used to set up the DGP for the Monte Carlo simulations ignoring
the disturbances, x̃∗

ij. In a first column, Table 1 reports on the quintiles of the true
trade flows consistent with the Anderson and van Wincoop (2003) model (AvW).
The table displays the corresponding approximation errors in percent as well as
the decomposition of the BvOLS-approximation error as derived in Corollary 1.

Two results stand out. First, both the BB- and BvOLS-approximations exhibit
a negative and substantial approximation error amounting to −63.2 (BB) and
−66.7 (BvOLS) percent of the true export flows on average. Moreover, the
approximation error increases with the size of the trade flows in both cases with
the BvOLS-linearization error turning out somewhat larger than that of BB in
all quintiles. For the BB-approximation, the difference between the fifth and the
first quintile amounts to −22.7 percentage points. This difference is similar for the
BvOLS-approximation (−22.6 percentage points).

Second, the decomposition of the bias as in Corollary 1 reveals that the
difference in the sales and expenditure shares (true ones under BB versus
observed ones under BvOLS) contributes 12 percent on average to the BvOLS-
approximation error. This contribution decreases with the size of the true exports
across quintiles, varying between 16.7 percent in the lowest quintile and 6.8 in
the highest one. In contrast, the usage of different projection matrices in the
penultimate column plays a minor role.
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Table 2: The bias of the BvOLS-approximation and its decomposition

In percent of r̃BvOLS(t, tBB)

Quintiles x̃ij,AvW r̃(t, tBB) r̃BvOLS(t, tBB) x̃BB − x̃BvOLS α (QBB − QBvOLS)∆tBB r̃(t, tBB)

1 −13.16 −47.86 −53.14 16.70 −3.00 86.30
3 −11.38 −59.50 −63.35 14.20 −3.50 89.30
3 −10.39 −65.60 −68.98 12.30 −2.70 90.30
4 −9.43 −69.55 −72.54 10.00 −1.80 91.90
5 −7.72 −73.52 −75.69 6.80 −0.80 94.10

Total −10.42 −63.20 −66.73 12.00 −2.40 90.40

Notes: Index AvW pertains to the true Anderson and van Wincoop (2003) model. Indices BB and BvOLS

refer to models that assume that trade costs in the approximation point are tBB = tιN2 and sales and

expenditure shares are consistent with that or as observed, respectively. The columns labelled r̃(t, tBB) and

r̃BvOLS(t, tBB) contain the BB- and BvOLS-approximation errors in percent of the true AvW-values. The

last three columns are the components in percent of BiasBvOLS as derived in Corollary 1. There are 42

countries and 1,764 country-pair observations. Quintiles refer to the predicted AvW-trade flows.

Equipped with this artificial theory-consistent data set, the Monte Carlo
exercise proceeds with three types of estimators:

1. The nonlinear Anderson and van Wincoop (2003) estimator (AvW), which
imposes the system of multilateral resistances as a restriction assuming the
equilibrium conditions hold in expectation. The system is solved in an inner
loop to obtain estimates β̂i and γ̂j at given ζ̂. The outer loop estimates ζ̂

by OLS for given β̂i and γ̂j. Similar to the PPML estimator with country-
fixed effects, this estimator obtains theory-consistent parameter estimates
that adhere to the system of multilateral resistances under the adopted
assumptions.

2. Using either the observed sales and expenditure shares (BvOLS) or the
theory-consistent ones (BB) to form the weighted within transformation
matrices QBvOLS or QBB, respectively, BvOLS- or BB-estimation proceed
as described in Sections 2 and 3. BvOLS and BB include a constant to
obtain properly centered residuals. Hence, the specifications control for the
average approximation bias.

3. The within estimator (model w) uses the unweighted projection matrixQw =
I −D(D′D)−1D′ to sweep the exporter- and importer-country fixed effects
and then applies OLS.

Table 2 reports the simulated deviations of the estimated parameters under
model ∈ {AvW,BB,BvOLS,w} from their true counterparts measured as the
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bias in percent. The corresponding results indicate that the choice of the model
indeed affects trade-cost parameter estimation.

First, there is virtually no bias of the AvW and the within estimates, as one
would expect in general and from the analysis above. In terms of the mean-squared
error, there is no advantage of using the nonlinear AvW estimator over the within
estimator.

Second, both the BB- and BvOLS-estimates are prone to substantial biases.
The largest biases are found for the impact of contiguity with the bias being as
large as 39.2 percent with BvOLS and even 53.7 percent with BB in absolute value,
respectively. The bias of BvOLS exceeds 9 percent and the one of BB 8 percent
for all parameters in Table 2. The BvOLS-parameter estimates are better off than
the BB estimates that are based on the theory-consistent approximation point at
tij,a = t for all i and j in almost all cases, except for log distance. Although the
average approximation error of BvOLS is slightly larger in absolute value than
that of BB as indicated by the results in Table 1, this does not translate one-for-
one into a parameter bias as derived in Proposition 2. Having a closer look at
the components of the simulated parameter bias points to an important impact of
the difference of the approximation points in shaping that bias. It works in the
opposite direction of the BB-linearization bias and, hence, reduces the simulated
bias of the BvOLS-parameter estimates.

Third, in terms of the root mean-squared error the difference between the BB-
and BvOLS-estimators turns out relatively small. Only the estimated border-
dummy parameter forms an exception. The corresponding root mean-squared
error under BB amounts to 0.51, while for BvOLS we find a smaller value of 0.33.
Overall, the findings in Table 2 are well in line with some earlier results, see, e.g.,
Bergstrand, Egger, and Larch, (2013, Table 1).
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Table 3: Monte Carlo simulation results

Bias in percent ζAvW ζBB ζBvOLS ζw

Border −0.04 21.53 11.96 −0.02
Log distance 0.06 8.62 9.33 −0.06
Contiguity −0.73 −53.72 −39.36 −0.26
Common language 0.37 −39.21 −26.18 0.27
RTA 0.42 20.16 19.46 0.10

Root mean-squared error

Border 0.24 0.51 0.33 0.26
Log distance 0.05 0.08 0.08 0.05
Contiguity 0.11 0.18 0.14 0.10
Common language 0.13 0.17 0.14 0.12
RTA 0.06 0.13 0.13 0.09

Notes: Index AvW pertains to the true Anderson and van Wincoop (2003)

model. BvOLS indicates the usage of observed expenditure and sales shares in

forming the weighted within transformation matrix, while BB stands for the

use of true shares at the approximation point. Subscript w indicates two-way

(unweighted within) country-fixed-effects parameters. There are 42 countries,

1,764 country-pair observations, and 20,000 Monte Carlo runs.

In order to provide further evidence on the approximation errors, we average
the simulated parameter estimates over all Monte Carlo runs. Based on these
means we calculate the implied predictions of the trade flows at the observed
trade frictions and plot the log differences between these predictions of the linear
approximations against the truth as described by the nonlinear general-equilibrium
model. Since the trade-friction parameters are treated as fixed and all predictions
are free of the stochastic disturbances, prediction errors only reflect the biases of
the estimated parameters and the approximation errors together.

The AvW predictions for the observed baseline are unbiased up to a small
numerical margin. Hence, they are the preferred ones for counterfactual analysis.
For the EP1-predictions (not displayed in the graphs), the same holds true. Note
that the EP1-approximation uses within-model predictions of x̃∗

ij based on equation
(8) to form the baseline predictions of the observed log exports. Since the predicted
trade frictions serve as the point of approximation, the EP1-prediction is free of
an approximation bias at that point so that there is no need for illustration.

In contrast, we observe substantial deviations from the truth for the BB-
and BvOLS-approximations as shown in Figure 3. The weighting scheme of the
projection matrices used to derive the predictions is very similar in both cases,
and the different points of approximation do not make a sizeable difference as
compared to the overall linearization error. Overall, both BB and BvOLS tend to
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produce upward-biased predictions for larger bilateral trade flows and downward-
biased ones for smaller bilateral trade flows. This finding is line with the findings
in Table 1.16

Figure 3: The bias of the baseline predictions: BvOLS and BB models vs. true
value
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Note: Both models include a constant that absorbs the average linearization error.

16We acknowledged above that two BvOLS versions had been proposed by Baier and
Bergstrand (2009a, 2010), one weighs trade costs by sales and expenditure shares and the second
one does not (putting a weight of 1/N where N is the number of countries). The “unweighted”
approach of Baier and Bergstrand (2010) lacks the parameter bias (akin to a two-way country-
fixed-effects estimator) relative to weighted BvOLS in Baier and Bergstrand (2009a). However,
for trade-flow predictions or counterfactual analysis, the weighted BvOLS approach outperforms
the unweighted one in spite of all its biases. Therefore, we suppress a presentation of the results
for the unweighted BvOLS approach in the remainder of the paper.
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BvOLS leads to severely biased predictions of counterfactual changes. We illustrate
this point by focusing on two a counterfactual reduction in ad-valorem trade
cost and report changes in counterfactual log outcome, ˆ̃xc

ij, relative to (minus)

benchmark outcome, ˆ̃xij. Specifically, for any model ∈ {BvOLS,EP1}, we
compute ∆ˆ̃xij,model = ˆ̃xc

ij,model−ˆ̃xij,model and ∆ˆ̃xij,model−∆x̃ij,AvW , i.e., the difference
in predicted comparative-static changes in a linearized model relative to the true
(Anderson and van Wincoop) nonlinear model.

We conduct an experiment with two alternative magnitudes of trade-cost
changes. Specifically, we choose a counterfactual-minus-benchmark change at
observed trade costs of tcij − tij ∈ {0.95; 0.75}.17 The reason for considering two
magnitudes of change is that larger changes involve bigger linearization biases (see
Section 2.4).

The results for this experiment and the associated magnitudes of change for
log normalized trade flows in the BvOLS and EP1 models in deviation of the true
nonlinear model (AvW) are summarized in two panels in Figure 4. The left panel
involves a reduction of ad-valorem trade costs by 5% and the one on the right by
25%.

Prior to looking at the figure, let us form expectations in terms of the
insights from Section 2.4 above. Note that the considered counterfactual changes
correspond to ones where trade costs are reduced from the point where the EP1

model is tangential to the horizontal axis in Figures 1-2. Reducing trade costs there
suggests that EP1 should predict the change ∆x̃ij,AvW quite well and with a small
positive bias which increases with a larger considered change in trade costs. Hence,
we would expect ∆ˆ̃xij,EP1 − ∆x̃ij,AvW to be mildly positive and larger the larger
is tc − t. At the considered reference point at t ̸= tιN2 , ∆ˆ̃xij,BvOLS − ∆x̃ij,AvW

is relatively steep in Figures 1 and 2. It is positively sloped to the left of the
reference-point tij, whereas ∆ˆ̃xij,EP1 − ∆x̃ij,AvW is negatively-sloped. Finally, in
the vicinity of t, the slope of ∆ˆ̃xij,BvOLS−∆x̃ij,AvW in absolute value is much bigger
than that of ∆ˆ̃xij,EP1 − ∆x̃ij,AvW . Combining these insights, we would expect a
potentially large, negative value of ∆ˆ̃xij,BvOLS−∆x̃ij,AvW and a small, positive one
for ∆ˆ̃xij,EP1 −∆x̃ij,AvW .

An inspection of Figure 4 corroborates all of the above expectations, while
additionally attesting to a substantial variation in the magnitude of the biases,
especially for BvOLS, across country pairs.

17One could alternatively change specific observables behind trade costs such as distance, but
such an experiment would be proportional to the one chosen. However, in such an experiment the
predicted counterfactual change would additionally affected by the bias of the estimated trade
cost parameters under BvOLS.
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Figure 4: The bias of the estimated impact of a counterfactual ad-valorem trade
cost change on predicted bilateral flows
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Note: The dark points refer to the EP1-approximation using the unweighted within estimates of the trade friction
parameters. The approximation point is at observed trade costs. The light gray points represent the bias of the
counterfactual BvOLS predictions.

Table 3 focuses on the latter and reports on average biases (mean) as well as
standard deviations (sd) of the comparative-static changes in ∆ˆ̃xij,model relative to
the true nonlinear model in the respective country group. For cross-border trade
we consider four groups of country pairs: ones where both the exporter’s and the
importer’s sales are above the median country (large-large), ones where only the
exporter or importer is large in terms of of sales (large-small, small-large), and ones
where both the exporter and the importer are small in terms of unilateral exports
(small-small). We specifically report on two linearized models, namely BvOLS
and EP1. The table also displays results on the counterfactual change in domestic
sales for small and large countries. The results in Table 3 contain averages of
true predicted counterfactual changes by the AvW model (AvW, mean), and the
average biases and their standard deviations across country pairs for BvOLS and
EP1 in two subsequent pairs of columns.

Table 3 shows that EP1 exhibits a small, negligible bias of predicted
counterfactual changes in bilateral exports in all considered groups of countries.
As expected, the bias is somewhat larger with a bigger considered change in trade
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costs (25% versus 5%). The bias is larger by at least one order of magnitude
with BvOLS versus EP1. In particular, the bias of BvOLS is larger for country
pairs where absolute bilateral exports are larger. To see the latter, compare the
values for “Domestic large” versus “Domestic small”, pertaining to domestic sales
and brackets of their relative magnitude in the data. Or compare exports in the
group “Large-large” – or even “Large-small” and “Small-large” – with ones in the
group “Small-small”.

To conclude, the BvOLS-approach performs poorly in counterfactual
experiments which are related to trade-cost changes relative to the observed
benchmark state, because its approximation point is distant and because it
involves an inappropriate linearization at the approximation point using sales and
expenditure shares which are not associated with this point.

Table 4: The bias of predicted general-equilibrium-consistent counterfactual
effects for various approaches

AvW Bias BvOLS Bias EP1

5% reduction mean mean sd mean sd

Domestic small −0.039 −0.020 0.009 −0.004 0.002
Domestic large −0.016 −0.038 0.007 0.001 0.002
Small-small 0.012 −0.020 0.008 −0.004 0.002
Large-large 0.035 −0.038 0.014 0.001 0.002
Small-large 0.023 −0.029 0.012 −0.002 0.002
Large-small 0.024 −0.029 0.011 −0.001 0.002

Total 0.022 −0.029 0.013 −0.002 0.002

25% reduction

Domestic small −0.229 −0.101 0.049 −0.011 0.014
Domestic large −0.098 −0.207 0.042 0.010 0.012
Small-small 0.059 −0.101 0.042 −0.011 0.010
Large-large 0.189 −0.207 0.072 0.010 0.015
Small-large 0.122 −0.152 0.061 −0.002 0.009
Large-small 0.127 −0.156 0.057 0.001 0.015

Total 0.117 −0.154 0.070 −0.001 0.015

Notes: AvW refers to the true counterfactual change obtained by solving the nonlinear Anderson and

van Wincoop (2003) general-equilibrium model. There may be some bias with that model even, as it has

to be estimated and as there is a residual term that generates a gap between the model and the data.

BvOLS uses observed sales and expenditure shares and uniform trade costs as the approximation point.

EP1 refers to the within estimates with true bilateral trade flows as weights.
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5 Conclusions

Structural-quantitative models of aggregate bilateral trade at the country-pair
(or country-pair-sector country-pair-product) level exhibit a structure which is
nonlinear in the parameters.

Three leading approaches to estimate parameters while respecting general-
equilibrium constraints exist: (i) one which controls for general-equilibrium effects
through the inclusion of country-fixed effects (see Eaton and Kortum, 2002);
(ii) one which estimates the parameters by conditioning on iteratively solved
equilibrium constraints in a nonlinear estimation model (see Anderson and van
Wincoop, 2003); and (iii) a linearization of the model, dubbed Bonus-vetus-OLS
(BvOLS or Good Old OLS; see Baier and Bergstrand 2009a) – which intends
to combine the merits of (i) and (ii) by conditioning on linearized versions
of the nonlinear equilibrium-constraint terms in OLS estimation without fixed
effects. The latter enjoys popularity among practitioners not only in international
economics but beyond.

This paper shows that BvOLS suffers from a bias in the linearization (or
approximation) point, which leads to a parameter-estimation bias as well as a
bias in the quantification of the effects of trade-cost changes. We quantify the
overall bias and decompose it. Moreover, we propose an alternative linearization
approach which serves as a remedy and approximates the model at data-supported
points.
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Appendix

A Proofs of the Propositions and Corollaries

A.1 Approximating the System of Multilateral Resistances, Proof
of Proposition 1

As shown in Section 2.2, the system of multilateral resistances can be written as
an implicit function

F(t) =

 ∑N
i=1 e

αtij+µi(t)+mj(t) − θj(t), j = 2, ..., N
...∑N

j=1 e
αtij+µi(t)+mj(t) − κi(t), i = 1, ..., N

 = 0.

Remember the normalization m1(t) = 0 and that the system of trade resistances
comprises 2N − 1 interdependent equations and variables. Also recall that index
a pertains to the point of approximation that replicates the baseline equilibrium
at tij,a and that trade costs are parameterized by a single explanatory variable to
simplify notation.

Abbreviating µi,a ≡ µi(ta) and mj,a ≡ mj(ta) and ignoring the remainder
linearization error, the system of multilateral resistance terms can then be linearly
approximated as

F(t) ≈ F(ta) +



θj,a(mj −mj,a) j = 2, ..., N

+
∑N

i=1 X̃ij,a(µi − µi,a) + α
∑N

i=1 X̃ij,a(tij − tij,a)∑N
j=2 X̃ij,a(mj −mj,a) i = 1, ..., N

+κi,a (µi − µi,a) + α
∑N

j=1 X̃ij,a(tij − tij,a).

Note we insert

θj,a =
N∑
i=1

eαtij+µi,a+mj,a , j = 2, ..., N

κi,a =
N∑
j=1

eαtij+µi,a+mj,a , i = 1, ..., N.

This allows us to define the (2N −1×2N −1) matrix of first derivatives. For this,
we collect binary exporter dummies in Dx and importer dummies in Dm (skipping
importer country 1), and the two together in the N2 × (2N − 1) design matrix
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D = [Dm,Dx]. A constant is absent from this model to avoid multicollinearity. It
is straightforward to show that[

∂F(t)
∂m′

∂F(t)
∂µ′

]
t=ta

= D′G(ta)D,

where G(t)=diag(X̃ij(t)) is an N2 ×N2 matrix and we abbreviate Ga ≡ G(ta).
Defining ∆ta= t − ta, the linear approximation of the system of 2N − 1

multilateral resistance equations can thus be compactly written in matrix form
as

F(t)︸︷︷︸
0

= F(ta)︸ ︷︷ ︸
0

+ αD′Ga∆ta +D′GaD

[
∆m(t, ta)
∆µ(t, ta)

]
+ r(t, ta),

where r(t, ta) denotes the approximation error. Since D′G(ta)D has full rank and
is invertible, it follows that[

∆m(t, ta)
∆µ(t, ta)

]
= − (D′GaD)

−1
(αD′Ga∆ta + r(t, ta)) .

In vector form, with the vector of log normalized trade flows x̃(t) containing

elements x̃ij(t) = log
(
X̃ij(t)

)
, the model can be compactly written as

x̃(t) = αt+D

[
m(t)
µ(t)

]
,

and its linear approximation at ta is given as

x̃(t) = x̃a + α∆ta −D (D′GaD)
−1

(αD′Ga∆ta + r(t, ta)) .

We decompose
x̃(t) = x̃L(t, ta) + r̃(t, ta),

where

x̃L(t, ta) = x̃a + α

I−D (D′GaD)
−1

D′Ga︸ ︷︷ ︸
Qa=I−Pa

∆ta = x̃a + αQa∆ta
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and

r̃(t, ta) = x̃(t)− x̃L(t, ta)

= αt+D

[
m(t)
µ(t)

]
−αta−D

[
m(ta)
µ(ta)

]
︸ ︷︷ ︸−α∆ta

x̃a

+αD (D′GaD)
−1

D′Ga︸ ︷︷ ︸
Pa

∆ta

= αPa∆ta+D

[
∆m(t, ta)
∆µ(t, ta)

]
= D

(
α (D′GaD)

−1
D′Ga∆ta − (D′GaD)

−1
(αD′Ga∆ta + r(t, ta))

)
= −D (D′GaD)

−1
r(t, ta),

using [
∆m(t, ta)
∆µ(t, ta)

]
= − (D′GaD)

−1
(αD′Ga∆ta + r(t, ta)) .

A.2 The BvOLS-Approximation and its Approximation Error,

Proof of Corollary 1

The BB-linearization applies Proposition 1 setting tBB= tιN2 (i.e., a = BB) and
using GBB = diag(κi(tBB)θj(tBB)). The BvOLS-approximation uses the observed
sales and expenditure shares and is given as

x̃L,BvOLS(t, tBB) = x̃BvOLS + αQBvOLS∆tBB.

Using

x̃(t) = x̃BB + αQBB∆tBB + r̃(t, tBB)

r̃(t, tBB) = −D (D′GaD)
−1

r(t, tBB)

yields the approximation error

x̃(t)− x̃L,BvOLS(t, tBB) = x̃BB + αQBB∆tBB + r̃(t, tBB)− x̃BvOLS + αQBvOLS∆tBB

= (x̃BB − x̃BvOLS) + α (QBB −QBvOLS)∆tBB + r̃(t, tBB).

A.3 BvOLS-Parameter Estimates, Bias and Predictions. Proof of

Proposition 2

The true econometric model gravity model can be compactly written as

x̃(t) = αt+D

[
m(t)
µ(t)

]
+ ε, s.t. F(t) = 0,
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where ε denotes the disturbances. At the approximation point tBB, the BvOLS-
model in logs reads

∆x̃BvOLS = x̃(t)− x̃BvOLS(tBB) = αQBvOLS∆tBB + r̃BvOLS(t, tBB) + ε, (9)

where x̃BvOLS has typical element lnκi + ln θj at the point of approximation
and ∆tBB has typical element tij − t for all i and j. QBvOLS = I −
(D′GBvOLSD)−1D′GBvOLS withGBvOLS = diag(κiθj). Applying OLS, the BvOLS
estimate of α is easily derived as

α̂BvOLS = (∆t′BBQ
′
BvOLSQBvOLS∆tBB)

−1
∆t′BBQ

′
BvOLS∆x̃BvOLS.

Inserting the true data-generating process (9) and defining HBvOLS =
∆t′BBQ

′
BvOLSQBvOLS∆tBB yields

α̂BvOLS = H−1
BvOLS∆t′BBQ

′
BvOLS

[
αQBvOLS∆tBB + r̃BvOLS(t, tBB) + ε︸ ︷︷ ︸

]
True model for ∆x̃

= α +H−1
BvOLS∆t′BBQ

′
BvOLS (r̃BvOLS(t, tBB) + ε) .

As shown in Corollary 1, the BvOLS-approximation error is given as

r̃BvOLS(t, tBB) = x̃BB − x̃BvOLS + α(QBB −QBvOLS)∆tBB + r̃(t, tBB).

Next observe that for any approximation points a and a′ with asymmetric sales
and expenditure shares it holds that

PaPa′ = D (D′GaD)
−1

D′GaD (D′Ga′D)
−1

D′Ga′ = Pa′

P′
aPa′ = GaD (D′GaD)

−1
D′D (D′Ga′D)

−1
D′Ga′ ̸= Pa′

Q′
aQa′ = (IN2 −P′

a)(IN2 −Pa′) = IN2 −P′
a −Pa′ +P′

aPa′ ̸= Qa

Q′
aD = D−GaD (D′GaD)

−1
D′D ̸= 0.

It follows that the BvOLS estimate of α exhibits a bias, i.e.,
Q′

BvOLS r̃BvOLS(t, tBB) ̸= 0, since

QBvOLSD ̸= 0,

Q′
BvOLSQBB ̸= 0,

Q′
BvOLSQBvOLS ̸= 0.

Hence,Q′
Bvols(QBvols−QBB) ̸= 0. Moreover, although x̃BB−x̃BvOLS lacks bilateral

variation, it does not disappear as Q′
BvOLSD ̸= 0.

Taking expectations and assuming exogeneity of trade barriers allows to
calculate the bias of α̂BvOLS as

BiasBvOLS ≡ E[α̂BvOLS − α|t,κ,θ] = αH−1
BvOLS∆t′BBQ

′
BvOLS r̃BvOLS(t, tBB).
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Assuming that disturbances are independent but heteroskedastic with diagonal
variance-covariance matrix Ωε, it follows that

E[(α̂BvOLS − α−BiasBvOLS)(α̂BvOLS − α−BiasBvOLS)
′|t,κ,θ]

= H−1
BvOLS∆t′BBQ

′
BvOLSΩεQBvOLS∆tBBH

−1
BvOLS.

The bias disappears if the BvOLS estimator is unweighted. Using the subscript
a = w for this case and setting Gw = IN2 yields symmetric and idempotent
projection matrices Pw = D (D′D)−1D′, Qw = IN2 −Pw and QwD= 0.

α̂w = (∆t′BBQw∆tBB)
−1

∆t′BBQw (αQBB∆tBB + r̃BB(t, tBB) + ε) .

The bias disappears, because r̃(t, tBB) exhibits unilateral variation only and
QwD = 0. Further, QwQBB = Qw, since

PwPBB = D (D′D)
−1

D′D (D′GBBD)
−1

D′GBB = PBB,

QwQBB = IN2 −Pw −PBB +PwPBB = Qw.

Then,
α̂w − α = (∆t′BBQw∆tBB)

−1
∆t′BBQwε.

and E[α̂w − α|t,κ,θ] = 0. Hence, one obtains the standard within-estimator of a
linear two-way panel model.

A.4 Counterfactual Changes. Proof of Corollary 2

Consider a counterfactual change in the trade frictions of tc − t, and assume
that both the base and counterfactual are predicted with BvOLS. Ignoring the
associated change in sales and expenditure shares, the structural gravity model
implies that counterfactual changes are given as

E[x̃c − x̃|t, tc, κ, θ] = QBvOLS∆tcα−QBvOLS∆tα

+ r̃BvOLS(t
c, tBB)− r̃BvOLS(t, tBB)

= QBvOLS (t
c − t)α + r̃BvOLS(t

c, tBB)− r̃BvOLS(t, tBB),

where r̃BvOLS(t
c, tBB) and r̃BvOLS(t, tBB) denote the BvOLS-linearization errors

as defined in Corollary 1.
The BvOLS-approach ignores the remainder error and proceeds with the

estimate
∆̂x̃c

L,BvOLS − ∆̂x̃L,BvOLS = QBvOLS (t
c − t) α̂BvOLS.

The estimated log counterfactual change under BvOLS is thus obtained as

E[∆̂x̃c
BvOLS − ∆̂x̃BvOLS|t, tc,κ, θ] = QBvOLS (t

c − t) (α +BiasBvOLS) ,
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considering that both ̂̃xBB and ̂̃xc

BB are approximated at the same point tBB =
tιN2 . The expected prediction error thus amounts to

E
[(̂̃xc

BvOLS − ̂̃xBvOLS

)
− (x̃c − x̃) |t,κ,θ

]
= QBvOLS (t

c − t)BiasBvOLS − r̃BvOLS(t
c, tBB) + r̃BvOLS(t, tBB)).

An alternative is to predict both base and counterfactual, the latter with a
linearization at t, as observed in the base (with subscript EP1) using the unbiased
within estimator: ̂̃xc

EP1
− ˜̂xEP1 = QEP1(t

c − t)α̂w,

where QEP1 = IN2 −D (D′GEP1D)−1D′GEP1 and GEP1 = diag(
̂̃
X ij,EP1(t)). Since

the baseline prediction is free of bias, r̃EP1(t, t) = 0, the bias of the predicted
counterfactual change with the EP1 linearization is given as

E
[(̂̃xc

EP1
− ̂̃xEP1

)
− (x̃c − x̃) |t, tc,κ, θ

]
= E [α̂wQEP1(t

c − t)|t, tc, κ, θ]− αQEP1(t
c − t)− r̃EP1(t

c, t)

= −r̃EP1(t
c, t).

A.5 Endogenous Sales and Expenditure Shares in the EP2 -Model

The proposed EP1- as well as the BvOLS-approximation in the main text ignore
that the sales and expenditure shares adjust endogenously in response to changes
in trade barriers. To account for the latter, observe that in an endowment economy
as assumed in Section 2, the ratio of sales between any counterfactual value and
the observed base value with index a behaves according to

Yi

Yi,a

=
piAi

pi,aAi

= e
µi−µi,a

α ,

where Ai denotes the endowment of economy i. Remember, α = 1−σ is the trade
elasticity. This result uses µi = ln

(
κiΠ

−α
i

)
= α ln pi and we have

κi =
Yi∑N
k=1 Yk

=

e

µi−µi,a
α Yi,a∑N

k=1
Yk,a∑N

k=1
e

µk−µk,a
α Yk,a∑N

l=1
Yl,a

=
e
µi−µi,a

α κi,a∑N
k=1 e

µk−µk,a
α κk,a

θj = bjκj.

bj ≡ θj/κj denotes the fixed trade imbalance of country j. κi and θj denote
the sales and expenditure shares, respectively. Deviating from the main text,
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for convenience we normalize µN(t) = 0, rather than m1(t) = 0. In addition,
we use the (2N − 1) × N matrix B, which is implicitly defined so that [θ(µ)′,
κ(µ)′]′ = Bκ(µ). In matrix form, we can then write the system of multilateral
resistances compactly as

F(t) = D′X̃(t)−Bκ(µ(t)) = 0,

where X̃(t) denotes the vector of normalized trade flows in levels. Furthermore,
we define hi,a =

κi,a∑N
k=1 κk,a

, ha = (h1,a, ..., hN,a)
′, h−1,a = (h1,a, ..., hN−1,a)

′.

Approximation at mi = mi,a and µi = µi,a obtains[
θ(µ)
κ(µ)

]
= Bκ(µ) = Bκ(µa) +Ha

[
m−ma

µ−1−µ−1,a

]
+ rκ(∆µa),

where

Ha,2N−1×2N−1 ≡
∂Bκ(µ−1)

∂
[
m′,µ′

−1

]∣∣∣∣∣
m=ma,µ−1=µ−1,a

=
[
0(2N−1)×N

1
α
B(2N−1)×N

(
diag(ha)− hah

′
−1,a

)
N×(N−1)

]
,

µ′
−1 = [µ1, ..., µN−1] and rκ(t, ta) denotes the remainder approximation error. The

linear approximation of F(t) at ta is given as

F(t)︸︷︷︸
0

= F(ta)︸ ︷︷ ︸
0

+αD′Ga∆ta+(D′GaD−Ha)

[
∆m(t, ta)
∆µ−1(t, ta)

]
+ r(t, ta)− rκ(∆µa).

Hence, the approximation of the system of multilateral resistance equations with
endogenous adjustment of sales and expenditure shares and its linearization error
can be written as

x̃L,GE(ta) = x̃a + α
(
I−D (D′GaD−Ha)

−1
D′Ga

)
∆ta

r̃GE(t, ta) = −αD (D′GaD−Ha)
−1

(r(t, ta)− rκ(∆µa)) .

B Further Monte Carlo Simulation Results

In an alternative design, the disturbances εij were drawn from
the normal distribution with mean 0 and variance σ2

ij =

exp(0.25dij)/N
−2
∑N

i=1

∑N
j=1 exp(0.25dij)), where dij denotes log distance.

The average of σij was normalized to 0.72 to match the average standard error of
the wild bootstrap disturbances.

37



The results are summarized in Table A.1, and they can be compared with
those in Table 2 of the main text. Overall, the two sets of results support similar
conclusions.

Table A1: Monte Carlo simulation results, alternative data-
generating process

Bias in percent ζAvW ζBB ζBvOLS ζw

Border 0.07 21.60 12.04 0.06
Log distance 0.02 8.71 9.42 0.06
Contiguity −0.40 −53.84 −39.47 −0.33
Common language 0.28 −39.50 −26.47 −0.09
RTA 0.04 19.94 19.24 −0.07

Root mean-squared error

Border 0.16 0.49 0.30 0.18
Log distance 0.04 0.08 0.08 0.04
Contiguity 0.10 0.17 0.14 0.09
Common language 0.10 0.15 0.12 0.09
RTA 0.05 0.13 0.13 0.08

Notes: Index AvW pertains to the true Anderson and van Wincoop (2003)

model. BvOLS indicates the usage of observed expenditure and sales shares in

forming the weighted within transformation matrix, while BB stands for the

use of true shares at the approximation point. Subscript w indicates two-way

(unweighted within) country-fixed-effects parameters. There are 42 countries

and 1764 country-pair observations and 20,000 Monte Carlo runs.
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