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Estimating the Trade and Welfare Effects of Brexit:

A Panel Data Structural Gravity Model

Harald Oberhofer and Michael Pfaffermayr

A Constrained Panel PPML estimation

For estimation purposes, the structural gravity model can be reformulated in an abbrevi-
ated notation with additive disturbances

sijt = mijt(ϑC) + εijt, εijt = mijt(ϑC) (ηijt − 1) ,

where mijt(ϑC) = ez
′
ijtα+βit(α,µ)+γjt(α,µ)+µij , ϑC = [φC(α, µ)′, µ′]′, φC = [α′, β′C(α, µ),

γ′C(α, µ)]′ and the tilde notation for restricted parameters is skipped.

Constrained Panel PPML uses nested iterations in a partial Gauss-Seidel algorithm (Guimarares
and Portugal 2010; Smyth 1996) that avoids the inversion of large matrices if the country-
pair dummies are included. In each iteration step r the iterative estimation procedure
calculates the following vectors and matrices:

m̂ijt,φ,r = ez
′
ijtα̂r+βit(α̂r,µ̂r)+γjt(α̂r,µ̂r)

m̂ijt,r = m̂ijt,φ,re
µ̂ij,r

M̂r = diag(m̂ijt,r)

Q̂µ,r = M̂rV − M̂rV Dµ

(
D′µV M̂rDµ

)−1

D′µV M̂r

Ĝr = W ′
φQ̂µ,rWφ, Wφ = [Z,Dφ]

F̂r = D′φQ̂µ,rWφ

where Ĝr is assumed to be non-singular. Dµ denotes the dummy design matrix for the
country-pair effects, while Dφ comprises the dummies for the multilateral resistance terms.
V is a diagonal matrix with ones for observed trade flows and zero for missing ones. Lastly,
δφ = [κ11, ..., κC−1,T , θ11, ..., θCT ] denotes the vector of all observed gross-production and
expenditure shares.

Given the results of iteration step r, step r + 1 proceeds with the following calculations:

1. φ̂r+1 = φ̂r +

(
Ĝ−1
r − Ĝ−1

r F̂ ′r

(
F̂rĜ

−1
r F̂ ′r

)−1

F̂rĜ
−1
r

)
W ′
φV (s− m̂r)
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+Ĝ−1
r F̂ ′r

(
F̂rĜrF̂

′
r

)−1 [
δφ −D′φm̂r

]
m̂ijt,φ,r+1 = ez

′
ijtα̂r+1+βit(α̂r+1,µ̂r)+γjt(α̂r+1,µ̂r)

2. µ̂r+1 = ln
((
diag(D′µV m̂φ,r+1)

)−1
δµ

)
m̂ijt,µ,r+1 = eµ̂ij,r+1

3. m̂ijt,r+1 = m̂ijt,φ,r+1m̂ijt,µ,r+1

4. Iterate until convergence of φ̂r and µ̂r.

Step 2 of the procedure shows that the country-pair fixed effects µij are fully determined by
the country-pair means of the bilateral trade flows δµ and the other structural parameters
and do not need to be estimated explicitly (see Wooldridge 1999). Hence, the inference
is conditional on δµ.

B Full endowment general equilibrium

Following Yotov et al. (2016), we write demand as

sijt = (pibitτijt)
1−σ θjtP

σ−1
jt

Pjt =

(
C∑
j=1

(pitbitτijt)
1−σ

) 1
1−σ

,

where bit is a preference parameter or may be determined by another isomorphic model.

Market clearing implies

κit =
C∑
j=1

sijt =
C∑
j=1

(pibitτijt)
1−σ θjtP

σ−1
jt = (pitbit)

1−σ
C∑
j=1

τ 1−σ
ijt θjtP

σ−1
jt︸ ︷︷ ︸

Π1−σ
it

and
(pitbit)

1−σ = κitΠ
σ−1
it → pit = 1

bit

(
κitΠ

σ−1
it

) 1
1−σ .

To obtain the full endowment general equilibrium effects of counterfactual changes in
trade barriers, the impact on factory gate prices and thus on the value of production has
to be considered in addition to the impact on nominal trade flows. Production may be
written as

Yit = pit
Yit,0
pit,0

.

The index 0 refers to the initially observed values in the baseline situation.1 Using the

1In an endowment economy Y0i

p0i
denotes country i’s the endowment.
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parametrization in the text

pit = b−1
it

(
κitΠ

σ−1
it

) 1
1−σ = b−1

it e
βit(α,µ)

1−σ

pit
pit,0

=
b−1
it e

βit(α.µ)
1−σ

b−1
it e

βit,0(α,µ)

1−σ
= e

βit(α,µ)−βit,0(α,µ)
1−σ

and production and expenditure shares can be written as

κit =
pit
pit,0

Yit,0
Yt,W∑C

k=1
pkt
pkt,0

Ykt,0
Yt,W

= e
βit(α,µ)−βit,0(α,µ)

1−σ κit.0∑C
k=1 e

βkt(α,µ)−βkt,0(α,µ)
1−σ κkt,0

θjt = pit
p0it
θjt,0 = e

βit(α,µ)−βit,0(α,µ)
1−σ θjt,0.

(1)

Note this specification holds initial trade deficits constant, which remain unexplained and
are taken as given.

C Counterfactual predictions, full general equilibrium

and the delta method

(i) We are interested in counterfactual changes in percent of the baseline given by

RM(α̂, Z0
t )−1m(α̂, Zt),

which has typical non-zero element

e(zijz−z
0
ijt)
′
α̂+βit(α̂,µ)+γit(α̂,µ)−β0

it(α̂,µ)−γ0jt(α̂,µ).

The matrix R selects a set of country pairs with cardinality smaller than the dimension of

α. Defining πit = e
βit(α,µ)−β

0
it(α,µ)

1−σ κ0
it, hit = πit∑C

k=1 πkt
and φt = (β′t(α, µ), γ′t(α, µ))′ the system

of multilateral resistances can be compactly written as

rκ,it(α, φt) =
C∑
j=1

ez
′
ijtα+βit(α,µ)+γjt(α,µ)+µij − hit = 0

rθ,jt(α, φt) =
C∑
i=1

ez
′
ijtα+βit(α,µ)+γjt(α,µ)+µij − hjt

θ0jt
κ0jt

= 0.

(ii) Below we use the following derivatives:

∂πit
∂βit

= 1
1−σπit
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∂
(
πit/

∑C
k=1 πkt

)
∂πit

∂πit
∂βit

∣∣∣∣∣∣ =

(∑C
k=1 πkt−πit

(
∑C
k=1 πkt)

2

)
πit

1
1−σ =

(
hit − h2

it

)
1

1−σ

∂
(
πit/

∑C
k=1 πkt

)
∂πkt

∂πkt
∂βkt

= −πit
(
∑C
k=1 πkt)

2

∂πkt
∂βkt

=
−πitπkt(∑C
k=1 πkt

)2
1

1−σ = −hithkt 1
1−σ

We solve for counterfactual equilibrium by Newton iterations using these results to obtain
the derivative of rt(α, φt) = D′tmt(α, βt, γt)− ht(βt):

∂rt(α, φt)

∂φ′t
= D′tMt(α)Dt −

[
1

1−σ

(
diag(hx,t)− hx,th′x,t

)
0

1
1−σ

(
diag(hm,t)− hm,th′m,t

)
0

]
,

where ht = (h′x,t, hm,t)
′, hx,t = (h1t, ..., hC−1,t)

′, hm,t =
(
h1t

θ01t
κ01t
, ..., hC−1,t

θ0C−1,t

κ0C−1,t
,
θ0Ct
κCt0

)
.

(iii) The implicit function theorem can be applied to the generalized system of multilateral
resistances. This accounts for the change of the baseline as well as of the counterfactual
as a response to a change of the structural parameter α. For period t the full system is
given as

rκ,it(α, φt) =
C∑
j=1

ez
′
ijtα+βit(α,µ)+γjt(α,µ)+µij − hit(α) = 0

rθ,jt(α, φt) =
C∑
i=1

ez
′
ijtα+βit(α,µ)+γjt(α,µ)+µij − hjt(α)

θ0jt
κ0jt

= 0

r0
κ,it(α, φ

0
t ) =

C∑
j=1

ez
0′
ijtα+β0

it(α,µ)+γ0jt(α,µ)+µij − κ0
it = 0

r0
θ,jt(α, φ

0
t ) =

C∑
i=1

ez
0′
ijtα+β0

it(α,µ)+γ0jt(α,µ)+µij − θ0
jt = 0

or in matrix form

rt(α, φt, φ
0
t ) =

[
D′tmt(α, φt)
D′tm

0
t (α, φt)

]
−
[
ht
h0
t

]
,

defining h0
t = (κ0′

t , θ
0′
t ). Consider the derivatives at a finite number of countries C :

rt,α =
∂rt(α, φt, φ

0
t )

∂α′ 2(2C−1)×K
=

[
D′tMt(α)Zt
D′tM

0
t (α)Z0

t

]
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∂rt(α, βt, γt, β
0
t , γ

0
t )

∂(β′t, γ
′
t, β

0′
t , γ

0′
t )

=

[
χt Tt 0 0
T ′t Θt 0 0

]
−
[

1
1−σ

(
diag(hx,t)− hx,th′x,t

)
0 − 1

1−σ

(
diag(hm,t)− hm,th′x,t

)
0

1
1−σ

(
diag(hm,t)− hm,th′x,t

)
0 − 1

1−σ

(
diag(hm,t)− hm,th′x,t

)
0

]
∂r0

t (α, βt, γt, β
0
t , γ

0
t )

∂(β′t, γ
′
t, β

0′
t , γ

0′
t )

=

[
0 0 χ0

t T 0
t

0 0 T 0′
t Θ0

t

]
.

Tt is a ((C − 1)×C) matrix with typical element mijt(α), χt = diag(hx,t), Θt = diag(θit)

χ0
t = diag(κ0

it) and Θ0
t = diag(θ0

jt). Note the third column of
∂rt(α,βt,γt,β0

t ,γ
0
t )

∂(β′t,γ
′
t,β

0′
t ,γ

0′
t )

accounts for

the impact of a change in β0
t on ht. Defining φ̃t = (β′t, γ

′
t, β

0′
t , γ

0′
t )′ It follows that in stacked

form derivative reads

rt,φ̃t =
∂rt(φ̃t)

∂φ̃′t
=


χt Tt 0 0
T ′t Θt 0 0
0 0 χ0

t T 0
t

0 0 T 0′
t Θ0

t



−


1

1−σ

(
diag(hx,t)− hx,th′x,t

)
0 − 1

1−σ

(
diag(hx,t)− hx,th′x,t

)
0

1
1−σ

(
diag(hm,t)− hm,th′x,t

)
0 − 1

1−σ

(
diag(hm,t)− hm,th′x,t

)
0

0 0 0 0
0 0 0 0


=

[
D′tMt(α)Dt −Ht(α) Ht(α)

0 D′tM
0
t (α)Dt

]
where

Ht(α) =

[
1

1−σ

(
diag(hx,t)− hx,th′x,t

)
0

1
1−σ

(
diag(hm,t)− hm,th′x,t

)
0

]
.

Further, it can easily verified that

D′tM(α)Dt =

[
χt Tt
T ′t Θt

]
.

The implicit function theorem implies

rt,α + rt,φ̃t
∂φ̃t
∂α′

= 0⇒ ∂φ̃t
∂α′

= −r−1

t,φ̃t
rα
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or in matrix form (skipping the arguments)[
∂φt
∂α′
∂φ0t
∂α′

]

=

[
D′tMtDt −Ht Ht

0 D′tM
0
t Dt

]−1 [
D′tMtZt
D′tM

0
t Z

0
t

]
=

[
(D′tMtDt −Ht)

−1 − (D′tMtDt −Ht)
−1Ht (D′tM

0
t Dt)

−1

0 (D′tM
0
t Dt)

−1

] [
D′tMtZt
D′tM

0
t Z

0
t

]
=

[
(D′tMtDt −Ht)

−1
(
D′tMtZt −Ht (D′tM

0
t Dt)

−1
D′tM

0
t Z

0
t

)
(D′tM

0
t Dt)

−1
D′tM

0
t Z

0
t

]

(iv) Limit distribution of Comparative static effects:

For percentage changes define the selection matrix R so that RMt(α0, Zt)
−1 typical non-

zero element mijt(α0,z
c
ij)
−1 and observe that

RMt(α̂, Z
0
t )−1m(α̂, Zt)

has typical non-zero element e(zijz−z
0
ijt)
′
α̂+βit(α̂)+γit(α̂)−β0

it(α̂)−γ0jt(α̂). Treating country pair
fixed effects as constants the Taylor series approximation yields

e(zijz−z
0
ijt)
′
α̂+βit(α̂)+γit(α̂)−β0

it(α̂)−γ0jt(α̂)

= e(zijz−z
0
ijt)
′
α0+βit(α0)+γit(α0)−β0

it(α̂)−γ0jt(α0)
[
zijt + ∂βit

∂α′
+

∂γjt
∂α′

]
(α̂− α0)

−e(zijz−z0ijt)
′
α0+βit(α0)+γit(α0)−β0

it(α̂)−γ0jt(α0)
[
z0
ijt +

∂β0
it

∂α′
+

∂γ0jt
∂α′

]
(α̂− α0)

+op ‖C (α̂− α0)‖ .

One obtains the approximation

CRM0
t (α̂)−1mt(α̂)−M0

t (α0)−1mt(α0)

= CR

M0
t (α0)−1Mt(α0)

(
Zt −Dt

∂φt
∂α′

)︸ ︷︷ ︸
Υt(α0)

(α̂− α0)

−M0
t (α0)−1Mt(α0)

(
Z0
t −Dt

∂φ0

∂α′

)
(α̂− α0)︸ ︷︷ ︸

Υ0
t (α0)

+ op ‖C (α̂− α0)‖

= CRM0
t (α0)−1Mt(α0)

(
Γt(α0)− Γ0

t (α0)
)

(α̂− α0) + op ‖C (α̂− α0)‖ ,
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where

Γt(α0) = M0
t (α0)−1Mt(α0)

∗
(
Zt

(
IC2 −Dt [D′tMt(α)Dt −Ht(α)]

−1
D′tMt(α)

)
Zt

+ Dt [D′tMt(α)Dt −Ht(α)]
−1
Ht(α)

(
D′tM

0
t (α)Dt

)−1
D′tM

0
t (α)Z0

t

)
Γ0
t (α0) = M0

t (α0)−1Mt(α0)
(
Z0
t −Dt

(
D′tM

0
t (α)Dt

)−1
D′tM

0
t (α)Z0

t

)
.

Given that α̂ is consistent and C(α̂ − α0) is asymptotically normally distributed with
limiting variance Vα under a set of standard regularity conditions we obtain

CR
(
Υt(α0)−Υ0

t (α0)
)

(α̂− α0)
d→ N(0, R

(
Υt −Υ0

t

)
Vα
(
Υt −Υ0

t

)′
R′),

withR (Υt −Υ0
t ) = limC→∞R (Γt(α0)− Γ0

t (α0)) andR(Γt(α̂)−Υt) = op(1) andR(Υ0
t (α̂)−

Υ0
t ) = op(1).

D Monte Carlo simulations

We perform a small scale Monte Carlo analysis to asses the performance of the delta
method based confidence intervals for counterfactual predictions. Using the same database
as the empirical analysis in the main text the simulations are based on the 20 biggest coun-
tries and the years 1997, 2000, 2003 and 2006. The true model includes a border dummy
and log distance both interacted with time dummies for 2000, 2003 and 2006 as well as
an EIA dummy. We first run an initial panel PPML regression with these explanatory
variables together with fixed country-pair, exporter-time and importer-time effects. This
yields estimated parameters and the country-pair fixed effects that are used as the true
ones. The true exporter-time and importer-time effects are then derived as solutions of
the corresponding system of multilateral resistance equations.

The disturbances enter the true model multiplicatively so that a model which when es-
timated under the assumption of additive disturbances is heteroskedastic. Since distur-
bances with full support on R may lead to negative trade flow realizations, they are
generated from a truncated normal distribution with bounds chosen to avoid negative
trade flows. These disturbances are transformed to obtain an expected value of 1 and a
standard deviation of either 0.01 or 0.05, respectively. We run experiments for the fully
observed panel as well as for an unbalanced panel with 50 percent of the observations
missing in the first three periods. The last two waves of trade flows are fully observed to
guarantee that all country-pair fixed effects can be derived from at least two country-pair
observations.

All Monte Carlo experiments are based on 10000 replications and we report simulated
coverage rates for the 99%, 95% and 90% confidence intervals. As the Monte Carlo simu-
lations themselves add noise, the simulated coverage ratios have to be compared to their
confidence intervals amounting to [0.988, 0.992], [0.946, 0.954] and [0.894, 0.906] for the
99%, 95% and 90% confidence intervals, respectively.
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Table 1 reports the simulated coverage rates of the confidence interval for the border ef-
fect in the year 1997 and of the impact of counterfactually eliminating country borders
for those countries, whose size is below the median. The corresponding coverage rates in
last three columns of Table 1 refer to the average change of the domestic trade flows of
the group of small countries.

Under independent disturbances the coverage rates of the confidence intervals are very
close to their nominal values, both in case of the estimated structural slope parameter
as well as for the counterfactual prediction. This also holds true if 50 percent of the
observations are missing. All simulated coverage rates of the structural slope parameter
are within the 95% confidence intervals. For the counterfactual predictions the simulated
coverage rates are correct for the 99% confidence intervals, but marginally lie above the
upper bound in case of 95% confidence intervals confidence interval.

Table 1: Monte Carlo simulation results: Simulated standard coverage rates of
structural parameters and counterfactual predictions under constrained panel
PPML

Missings Std. Parameter Estimate Counterfactual

99% 95% 90% 99% 95% 90%

Heteroskedasticity robust
0 1 0.992 0.953 0.899 0.994 0.963 0.914
0 5 0.990 0.947 0.893 0.993 0.958 0.913

50 1 0.992 0.954 0.898 0.996 0.964 0.915
50 5 0.990 0.953 0.895 0.994 0.963 0.913

Country pair cluster
0 1 0.984 0.934 0.876 0.988 0.947 0.893
0 5 0.984 0.937 0.887 0.990 0.945 0.900

50 1 0.986 0.934 0.876 0.990 0.945 0.893
50 5 0.985 0.936 0.875 0.988 0.948 0.891

County-pair, exporter-time and importer-time cluster
0 1 0.942 0.892 0.849 0.947 0.903 0.859
0 5 0.945 0.891 0.847 0.945 0.900 0.857

50 1 0.953 0.895 0.843 0.951 0.903 0.853
50 5 0.949 0.899 0.845 0.950 0.905 0.854

Notes: 10000 Monte Carlo runs. Coverage rates refer to 95%-confidence intervals

based on the normal distribution.

The Monte Carlo simulation exercises also look at clustered standard errors. A second set
of experiments specifies the remainder error as an AR(1) process to account for autocor-
relation of the disturbances within country pairs over time, but preserving independence

8



across units. The corresponding with parameter is set to 0.2. The third set of experiments
additionally includes exporter-time and importer-time specific random effects that come
from the same truncated normal distribution as above. The two error components are
added with weights 0.1, while the within unit autocorrelated remainder disturbances get
the weight 0.8.

For the estimated standard errors clustered by country pairs the approximation by the
asymptotic normal distribution is somewhat weaker. The simulated coverage rates of
widehatα1 turn out slightly below their nominal rates and marginally outside the 95%-
confidence interval. This holds for both the fully observed panel and the one with 50%
missings. For example with 50% missings, Std.= 0.05 and a 95% significance level, the
simulated coverage rate amounts to 0.936 and at a 10% level it is found to be 0.875. But
the corresponding confidence intervals are [0.946, 0.954] and [0.894, 0.906], respectively.
In contrast, the coverage rates referring to the counterfactuals come quite close to their
nominal values in all cases.

In case of the three-way clustered standard errors 11, 492 out of 40, 000 Monte Carlo runs
delivered a negative definite estimated variance-covariance matrix casting some doubt on
the validity of three-way clustering. This phenomenon is well documented in the literature
(e.g., in Cameron, Gelbach and Miller, 2011). It tends to occur in models with clustering
in the same dimensions as the imposed fixed effects dummy design. These Monte Carlo
runs have been skipped. In the valid runs the coverage rates of the confidence intervals
lie below their nominal values across the board by about 5 percentage points, indicating
a weaker approximation by the normal and possible selection effects.
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