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1 The Dummy PPML Estimator

In order to derive the limit distribution of the PPML estimator for «, we define
W = [Z,D], G* = WVM*VW with M* = diag(e“s”"), where ¥* = (o, ¢*)
with ¢* = (5*,~")’ lies elementwise between 9 and 9. Applying the mean-value
theorem to the PPML-score yields
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For missing values one may define the selection matrix V' that is derived from the

identity matrix by setting all ones in the main diagonal to zero if the corresponding
=~ * 1 = 1

observation is missing. Defining Z* = M 22, D* = M*2D and Q5. = I —
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V D* (D*’ VD*) D*V and using the blocks of the partitioned inverse
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G = —GGLGy = <Z’*VQV5*V§*>_1 7"V D* (5*’1/15*)_1,
one can write
C (0 —ap) = C*°GML(Z'V = G1,G5'D'V)e := B ' A,

whete B* = 4 (Z°VQ,p.VZ) and A" = L (Z°VQ,p.M"}). Following
Fernandez-Val and Weidner (2017) and Wooldridge (1997) under a set of stan-
dard regularity conditions, the limit distribution of @ can be derived as

C(@—oap) > N(0,V,),

where V,, = By 1AOQEA680_ U with By = plime_,o B* is assumed to be invertible,
AL AL = plimg,o Ace’ A7, Q. = Elee'] is the diagonal variance matrix of
¢ with typical element O'iij. Plugging in the estimated residuals &, one can use
Vo = %B(a)_lA(a)diag(é\g’)A(&)’B(&)_l for inference in finite samples.

2 The bias of the standard errors of the Dummy
PPML estimator

The bias of the standard errors of the dummy PPML estimator for a is best
illustrated for the case of fully observed trade flows setting V = I-2. To simplify



the illustration of the bias of \A/a, we insert the true parameters into the matrices A

— 1 ~ 1
and B, but use the residuals €. Moreover, we take W = MgW and Z = My Z as a
non-stochastic matrices, whose elements are uniformly bounded. Then V,, can be
written as

V., = By Agdiag(28') Ay By .

Defining Hy = Iz — 1% (W’ W)i W , the residuals under dummy PPML are
given as (see Davidson and MacKinnon, 1993, 123-167)
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since [0 = 0o | = [[C2G@) " &Wel| < 1C7G@) | &We]| = 0,(C30,(C).
This uses G(9*) = W/ M*W and
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where Apin and Apa, are the minium and maximum eigenvalues of C~2G(¢) and
Amin > 0 and A < 00 in the compact parameter space is assumed.
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since £ [|5U|2] < 72 is assumed and Markov’s inequality implies |5 ‘ = 0,(1).
Furthermore ||w;;|| = (K + 2C — 1) ¢y for some constant c,,.

Inserting for € = Mé/zHWM0 "2 in V, yields
Vo = By Agdiag(My* He My e’ My /> He My"*) Ay By + 0,(1).

Using the multiplicative error specification with Q. = MZQ,, under regularity
conditions the bias of V,, can be written as

E [?a . va}

= B;'AMydiag (M(;l/ 2 e MO0, MY o My 2 — Qn> MoALBy* + o(1),



see Chesher and Jewitt (1987) and Cribari-Neto, Ferrari and Cordeiro (2000). The
matrix MO_I/QI:FVT,M&/2 can written as
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where Py is idempotent. It follows that

My Hy My *Q, My Hy My ' — Q)

(fes — Py) 2, (1o — P~ 1,
= _PWQW — QnPflmv/ + Pwﬁnpflw,

n

leading to

E Vo = Va| = By AoModiag (P Py — Pty — Q0 Pi) My Ay By + o(1).

The results of Chesher and Jewitt (1987) can be directly applied. The ij,ij-
diagonal element of diag (PWQnP‘/TV — P50, — anéT/) is given as

p%[“/,ianp'VV,ij — 2WiiPy ;= p%;[“/,ij (€ — 2wijlcz) Py 5,

where Py ij be the ij-th column of Py and observing that p;/NijW’ij = Dy ;> Since
P is idempodent. As in Chesher and Jewitt (1987) the proportionate bias of V,

X =~ . v’(‘/}afVa)v
(bp) is defined as pb(Va) = E | — 757

] for some vector v # 0. Ignoring the

remainder being o(1), it follows that

o (Vo= Va)v = /By AgModiag (P, P = Py — QPr) My Ay By v
= Zldiag(PanPW — PWQW — anw))z
= Z/diag(p/f/ﬁ’ij (Qn - QWij[CQ)pWJ'j)Z
with 2 = MyA By 'v. The proportionate bias in general depends on the degree of

heteroskedasticity and on the features of the data as represented by the leverage
Piir 445 Of Py, which is of order O(C™'), since trace(Py;) = K + 2C — 1. Further,



a lower and upper bound of bp can be established:
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Idempodency of Py implies that 0 < lel’l# Zk:l,l;ﬁj pZW ik = Paiiis (1 — pw,ij,ij>
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< % Since —4* < — and since the elements of the main diagonal of P are of
n,tj =n

order O(C1), we have

=52

sUp (pb(‘A/a)> < max [(Z—g - 1) P ijii(L = P aji) — pwﬂ-jﬂ-j] =0(C™)

v
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Since > iy i Dok oF, Popizak > 0 a0d Po (i — 2) is decreasing in
Dy ijiii

. 5 o —1
1%f (pb(Va)> > max <pwﬂ.j,l.j> <mi?x(pw7ij7ij — 2) =0(C™).
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