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1. INTRODUCTION

Bayesian Models:
I Convenient setting for very complex

models.
I MCMC simulation now possible on

virtually any computer.
I Inference does not rely on

asymptotics.

Existing Implementations:
I Provide infrastructures for a

number of regression problems.
I From univariate to multivariate

distributions.
I Highly specialized and optimized

engines.
I However, almost any engine has a

different interface.
Basic Ideas:
I Provide a flexible and unified modeling architecture.
I Use specialized/optimized engines to apply Bayesian structured additive

distributional regression a.k.a. Bayesian additive models for location scale
and shape (BAMLSS) and beyond.

I Facilitate new algorithms and extensions.
I The approach should have maximum flexibility/extendability, also

concerning functional types.

3. LEGO TOOLBOX

Terms:
Each vector of function evaluations is a composition of

fjk = fjk(Xjk,βjk),

Xjk (n×mjk) is a design matrix, βjk (qjk×1) are regression coefficients. Note:
functions are not necessarily linear in the parameters, e.g., growth curves.

Priors:
Generic prior for linear and nonlinear effects using a basis function approach
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Precision matrix Kjk corresponds to frequentist’s penalty matrix, τ 2
jk is equiva-

lent to the inverse smoothing parameter, common prior p(τ 2
jk) ∼ IG (ajk, bjk).

Response Distribution:
Main building block pdf f (y|θ1, . . . ,θK) and corresponding log-likelihood

`(β; y,X) =
n∑

i=1

log f (yi ; θi1 = h−1
1 (ηi1(xi,β1)), . . . , θiK = h−1

K (ηiK(xi,βK))).

Log-posterior

log p(ϑ; y,X) ∝ `(β; y,X) +
K∑
k=1

Jk∑
j=1

{log pjk(ϑjk)} ,

e.g., ϑjk = (β>jk, (τ 2
jk)>)> and pjk(·) denotes combination of all priors.

Posterior Mode/Mean Estimation:
Various algorithms require
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Hence, implementing new distributions usually requires derivatives for ηk, only.
Generic (blockwise) iterative updating scheme

β
(t+1)
k = Uk(β

(t)
k |·),

e.g., for backfitting or MCMC.

2. MODEL STRUCTURE

Within the GAMLSS model class all parameters of the response distribution
can be modeled by explanatory variables

y ∼ D (h1(θ1) = η1, h2(θ2) = η2, . . . , hK(θK) = ηK) ,

where D denotes any distribution available for the response variable y and θk,
k = 1, . . . ,K , are parameters that are linked to additive predictors.
The k-th additive predictor is given by

ηk = ηk(x;βk) = f1k(x;β1k) + . . . + fJkk(x;βJkk),

with unspecified (possibly nonlinear) functions fjk(·) of a generic covariate
vector x, j = 1, . . . , Jk and k = 1, . . . ,K . Examples of functions fjk(·):

z

f(
z)

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.0 0.2 0.4 0.6 0.8 1.0

1D Nonlinear Effects

z1

z2

f(z1, z2)

2D Surfaces Discrete Spatial Effects

id

f(
id

)

−
1.

0
−

0.
5

0.
0

0.
5

id1 id2 id3 id4 id5 id6 id7 id8

Random Effects

4. IMPLEMENTATION

An implementation is provided in the R package bamlss available at

https://R-Forge.R-project.org/projects/BayesR/

In R, simply type
> install.packages("bamlss", repos = "http://R-Forge.R-project.org")

Generic architecture, the setup
does not restrict to any specific
type of engine (Bayesian or fre-
quentist).

Various algorithms implemented,
in addition support for BayesX,
JAGS, Stan.
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5. EXAMPLE

Modeling daily precipitation data with a censored normal model

y? ∼ N(µ,σ2), µ = ηµ, log(σ) = ησ, y = max(0, y?).

For both µ and σ, we use the following additive predictor:

η = β0 + f1(day, lon, lat) + f2(lon, lat) + f3(day) + f4(alt).

Analysis based on the
HOMSTART data of the
ZAMG.

Predicted precipitation for
10th of January/July.
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