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Goal: Forecast lightning by statistical post-processing of numerical
weather prediction (NWP) output.

(a) Occurence: Is there any lightning? (Binary)

(b) Intensity: If there is any lightning, how many? (Counts > 0)

Forecasting Lightning
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ALDIS lightning counts:

Summer: May-August.
Afternoons: 12-18 UTC.
#Obs. ~ 8M.
Gridded on 18 × 18 km2.
2010-2017.

ECMWF ensemble forecasts:

Forecast horizons: 1-5 days.
2010-2017.
NWP outputs: Convective precipitation, CAPE, temperature,
relative humidity, vertical velocity, radiation, heat fluxes, ...
Median and interquartile range.

Data
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Lightning Counts
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 Spatial
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 Spatial

7



Model requirements:

Handle nonlinear relationships between the response and
covariates.
Select objectively important explanatory variables.
Provide inference of scores and predictions.

Software requirements:

Very flexible regression model.
Very large dataset.
Computationally intensive.
Implementation is not straightforward.

Forecasting Lightning
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Hence: Flexible regression framework for Bayesian additive models
for location, scale, and shape (BAMLSS).

Software: R package bamlss. Modular design supports easy
development.

Lego Toolbox
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Input Data, distribution, regression.

Pre-processing Model frame, transformations.

Estimation
Optimizer and/or sampler
functions.

Post-processing Sampling statistics & results.

Output Prediction, model selection,
visualization, ...

Software Design
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Any parameter of a population distribution  may be modeled by
explanatory variables

with .

Each parameter is linked to a structured additive predictor

 and .
: Link functions for each distribution parameter.
: Model terms of one or more variables.

Model Specification

D

y ∼ D (θ1(x; β1), … , θK(x; βK)) ,

β = (β⊤
1 , … , β⊤

K
)⊤

hk(θk(x; βk)) = f1k(x; β1k) + … + fJkk(x; βJkk),

j = 1, … , Jk k = 1, … ,K
hk(⋅)
fjk(⋅)
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Model Terms fjk(⋅)
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The main building block is .

Estimation typically requires to evaluate the log-likelihood

with .

The log-posterior (frequentist penalized log-likelihood)

where  are priors,  (smoothing) variances and  fixed
hyper parameters.

Model Fitting

dy(y|θ1, … , θK)

ℓ(β; y, X) =
n

∑
i=1

log dy(yi; θ1(xi; β1), … , θK(xi; βK)),

X = (X1, … , XK)

log π(β, τ; y, X, α) ∝ ℓ(β; y, X) +
K

∑
k=1

Jk

∑
j=1

[log pjk(βjk; τjk, αjk)] ,

pjk(⋅) τjk αjk
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For simple linear effects : .

For the smooth terms:

Using a basis function approach a common choice is

Precision matrix  derived from prespecified penalty matrices 
.

The variances parameters  are equivalent to the inverse
smoothing parameters in a frequentist approach.

Priors pjk(⋅)

Xjkβjk pjk(βjk) ∝ const

pjk(βjk; τjk, αjk) ∝ dβjk
(βjk| τjk; αβjk

) ⋅ dτjk(τjk| ατjk).

dβjk
(βjk| τjk, αβjk

) ∝ |Pjk(τjk)| exp(− β⊤
jk

Pjk(τjk)βjk).
1
2

1

2

Pjk(τjk)
αβjk

= {K1jk, … , KLjk}

τjk
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Bayesian point estimates of parameters are obtained by:

Problems 1 and 2 are commonly solved by computer intensive
iterative algorithms of the following type:

Estimation

Maximization of the log-posterior for posterior mode estimation.1

Solving high dimensional integrals, e.g., for posterior mean or
median estimation.

2

(β[t+1], τ [t+1]) = U(β[t], τ [t]; y, X, α).
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Example: MCMC updating functions .

Random walk Metropolis, symmetric .
Derivative based MCMC, second order Taylor series expansion
centered at the last state  yields  proposal
with

Metropolis-Hastings acceptance probability

Other sampling schemes, e.g., slice sampling, NUTS, t-walk, ...

Updating

Ujk(⋅)

q(β⋆
jk

|β
[t]
jk

)

π(β⋆
jk

|⋅) N (μ
[t]
jk

, Σ
[t]
jk

)

(Σ
[t]
jk
)

−1

= −Hkk (β
[t]
jk
)

μ
[t]
jk

= β
[t]
jk

− Hkk(β
[t]
jk
)

−1
s(β

[t]
jk
) .

α(β⋆
jk

|β
[t]
jk
) = min

⎧
⎨
⎩

, 1
⎫
⎬
⎭

.
p(β⋆

jk
|⋅)q(β

[t]
jk

|β⋆
jk

)

p(β
[t]
jk

|⋅)q(β⋆
jk

|β
[t]
jk

)
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Lightning data:

Lightning dataset includes >100 variables from ECMWF ensemble
forecasts.
#Obs. ~ 8M.

Challenges:

Select only relevant variables.
Algorithms for very large datasets in distributional regression?
The aim is to run the analysis for all of Europe!

➔ Efficient algorithm with a small memory footprint?!

Scalable Distributional Regression
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Consider the following updating scheme

Assuming model terms that can be written as a matrix product of a
design matrix and coefficients we obtain an iteratively weighted least
squares scheme given by

with working observations , working weights 

 and score vector .

Scalable Distributional Regression

β
[t+1]
k

= Uk(β
[t]
k

; ⋅ ) = β
[t]
k

− Hkk(β
[t]
k
)

−1
s(β

[t]
k
) .

β
[t+1]
jk

= Ujk(β
[t]
jk

; ⋅ )

= (X⊤
jkWkkXjk + Gjk(τjk))−1X⊤

jkWkk(zk − η
[t+1]
k,−j

),

zk = η
[t]
k

+ W
−1 [t]
kk

u
[t]
k

W
−1 [t]
kk

u
[t]
k
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Instead of using all observations of the data, we only use a randomly
chosen subset denoted by the subindex  in one updating step

where  is a weight parameter which specifies how much the
parameters at iteration  are influenced by parameters of the
previous iteration .

Use flat file format for each , i.e., only batch  is in memory.
This way, we can estimate models with really large datasets.

Scalable Distributional Regression

[s]

β
[t+1]
jk

= ν ⋅ (X⊤
[s],jkW[s],kkX[s],jk + Gjk(τjk))−1X⊤

[s],jkW[s],kk(z[s],k − η
[t+1]

[s],k,−j
)+

(1 − ν) ⋅ β
[t]
jk

,

ν
t + 1

t

Xjk [s]
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Mimics a second order stochastic gradient descent (SGD)
algorithm

and  is composed from first and second order derivative
information with

Hence, the updating step length is adaptive.

Scalable Distributional Regression

β
[t+1]
jk

= β
[t]
jk

+ ν ⋅ (βjk,[s] − β
[t]
jk

) = β
[t]
jk

+ ν ⋅ δ
[t]
jk

,

δ
[t]
jk

δ
[t]
jk

= βjk,[s] − β
[t]
jk

= [β
[t]
jk

− H[s],kk(β
[t]
jk
)

−1

s[s] (β
[t]
jk
)] − β

[t]
jk

= −H[s],kk(β
[t]
jk
)

−1

s[s] (β
[t]
jk
)
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Overfitting:

The idea is to select  using a stepwise algorithm which is based on
an "out-of-sample" criterion, i.e., the criterion  is evaluated on
another batch denoted by ,  respectively, i.e.

where  is a search interval for , e.g.,

Scalable Distributional Regression

τjk
C(⋅)

[~s] C[~s](⋅)

τ
[t+1]
ljk

← arg min 
τ ⋆
ljk∈Iljk

C[~s](Ujk(β
[t]
jk

, τ ⋆
ljk

; ⋅)),

Iljk τ
[t+1]
ljk

Iljk = [τ
[t]
ljk

⋅ 10−1, τ
[t]
ljk

⋅ 10].
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Some interesting features:

Scalable Distributional Regression

Set, e.g., , convergence after visiting  batches .1 ν = 0.1 m [s]

Only update if "out-of-sample" log-likelihood is increased.2

Boosting for variable selection: Update only  with
greatest contribution in "out-of-sample" log-likelihood.

3 fjk(⋅)

Bagging: If , each update is so to say a "sample".
Convergence similar to MCMC algorithms, i.e., if  start
fluctuating around a certain level.

4 ν = 1

β
[t+1]
jk

Slice sample  under , much faster!5 τljk C[~s](⋅)
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Motivation:

Lightning model.
Complex nonlinearities in the atmosphere?
Neural networks (NN) are universal function approximators.

Problems:

Estimation is difficult and can involve thousands of parameters.
Fully Bayesian inference?

Solution:

Use NNs based on random (inner) weights.
Recently, detailed description on weight sampling available.
Combine with LASSO shrinkage.

Neural Network Terms fjk(⋅)
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Count distribution: Discrete generalized Pareto .

Regression: Smooth terms for NWP output variables & NN.

f <- list(
  counts ~ s(sqrt_cape) + s(d2m) + s(sqrt_lsp) + ... + n(fn), 
  sigma ~ s(sqrt_cape) + s(d2m) + s(sqrt_lsp) + ... + n(fn)
)

Estimation: Batchwise boosting & bagging including NN.

b <- bamlss(f, family = "dgp", data = flash_train,
  optimizer = bbfit, nu = 0.05, batch_ids = c(5000, 4000),
  aic = TRUE, select = TRUE, ...)

Lego in Action

DGP(ξ, σ)

24



plot(b, model = "xi", term = c("s(t2m)", "s(ssr)", "s(w_prof_PC2)"))

Lightning Model
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plot(b, which = "qq-resid")

Lightning Model
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p <- predict(b, newdata = nd, type = "parameter")

Lightning Model
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Lightning Model
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