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Introduction

A not complete list of software packages dealing with Bayesian
regression models:

bayesm, univariate and multivariate, SUR, multinomial logit, . . .

bayesSurv, survival regression, . . .

MCMCpack, linear regression, logit, ordinal probit, probit, Poisson
regression, . . .

MCMCglmm, generalized linear mixed models (GLMM).

spikeSlabGAM, Bayesian variable selection, model choice, in
generalized additive mixed models (GAMM), . . .

gammSlice, generalized additive mixed models (GAMM).

BayesX, structured additive distributional regression (STAR), . . .

INLA, generalized additive mixed models (GAMM), . . .

WinBUGS, JAGS, STAN, general purpose sampling engines.
...



Introduction

Most Bayesian software packages provide support for the estimation of
so called mixed models (random effects), i.e., incorporating linear
predictors of the form

η = Xβ + Uγ,

where Xβ are fixed effects, e.g., p(β) ∝ const, and Uγ are the random
effects, γ ∼ N(0,Q(τ 2)).

Few Bayesian software packages provide support for the estimation of
semiparametric regression models with structured additive predictor

η = f1(z) + . . .+ fp(z) + x>β,

where fj are possibly smooth functions and z represents a generic
vector of all nonlinear modeled covariates.
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STAR Models

Within the basis function approach, the vector of function evaluations
fj = (fj(z1), . . . , fj(zn)) of the i = 1, . . . , n observations can be written
in matrix notation

fj = Zjγ j ,

with Zj as the design matrix, where γ j are unknown regression
coefficients. Form of Zj only depends on the functional type chosen.



Introduction

Penalized least squares:

PLS(γ,λ) = ||y− η||2 + λ1γ
′
1K1γ1 + . . .+ λpγ

′
pKpγp.

A general Prior for γ in the corresponding Bayesian approach

p(γ j |τ 2
j ) ∝ exp

(
− 1

2τ 2
j
γ ′jKjγ j

)
,

τ 2
j variance parameter, governs the smoothness of fj .

Structure of Kj also depends on the type of covariates and on
assumptions about smoothness of fj .

The variance parameter τ 2
j is equivalent to the inverse smoothing

parameter in a frequentist approach.
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However, any basis function representation can be transformed into a
mixed model representation

fj = Zjγ j = Zj(X̃β + Ũγ̃) = Xβ + Uγ̃,

with fixed effects β and random effects γ̃ ∼ N(0, τ 2I).

So the number of software packages that can estimate semiparametric
models is actually quite large.

The number of different models that can be fit with these engines is
even larger.
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The basic ideas are:

Design a framework that makes it (a) easy to use different
estimation engines and (b) fit models with a structured additive
predictor.

Therefore, we need to employ symbolic descriptions that do not
restrict to any specific type of model and term structure.

I.e., the aim is to use specialized/optimized engines to apply
Bayesian structured additive distributional regression a.k.a.
Bayesian additive models for location scale and shape (BAMLSS)
and beyond.

The approach should have maximum flexibility/extendability,
also concerning functional types.



Distributional regression

Within this framework any parameter of a population distribution may be
modeled by explanatory variables

y ∼ D (g1(θ1) = η1, g2(θ2) = η2, . . . , gK (θK ) = ηK ) ,

where D denotes any parametric distribution available for the response
variable.

Each parameter is linked to a structured additive predictor

gk (θk ) = ηk = Z1kγ1k + . . .+ Zpkγpk + Xkβk , k = 1, . . . ,K ,

where gk (·) are known monotonic link functions.

The observations yi are assumed to be independent and conditional on
a pre-specified parametric density f (yi |θi1, . . . ,θiK ).



Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ,σ2).



Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ = f (times), log(σ2) = β0).



Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ = f (times), log(σ2) = f (times)).



Distributional regression

Example: Head acceleration in a simulated motorcycle accident

accel ∼ N(µ = f (times), log(σ2) = f (times)).



A conceptional Lego toolbox
Families

Families specify the details of models.

Required details may differ from engine to engine, however, to fully
“understand” a distribution we need the following:

The density function.

The distribution function.

The quantile function.

Link function(s).

A random number generator.

First and second derivatives of the log-likelihood (expectations).

So implementing a “new” distribution means creating a new family
(object), including the minimum specifications required by the
estimating engine(s).



A conceptional Lego toolbox
Priors

For the linear part Xβ, a common choice is p(β) ∝ const .

For the smooth terms, a general setup is obtained by

p(γ j |τ 2
j ) ∝ exp

(
− 1

2τ 2
j
γ>j Kjγ j

)
,

where Kj is a quadratic penalty matrix that shrinks parameters towards
zero or penalizes too abrupt jumps between neighboring parameters,
e.g., for random effects Kj = I.

Weakly informative inverse Gamma hyperprior

p(τ 2
j ) =

baj
j

Γ(aj)
(τ 2

j )−(aj+1) exp(−bj/τ
2
j ).

with aj = bj = 0.001.



A conceptional Lego toolbox
Model fitting

The main building block of regression model algorithms is the
probability density function f (y|θ1, . . . ,θK ).

Estimation typically requires to evaluate

`(ϑ|y) =
n∑

i=1

ln f (yi |θi1 = h−1
1 (ηi1), . . . , θiK = h−1

K (ηiK )),

with ϑ = (β1, . . . ,βK ,γ1, . . . ,γK )>.

The log-posterior

ln p(ϑ|y) = `(ϑ|y) +
K∑

k=1

pk∑
j=1

{
ln p(βjk |τ 2

jk ) + ln p(τ 2
jk )
}
,

where ϑ = (β1, . . . ,βK ,γ1, . . . ,γK , τ
2
1, . . . , τ

2
K )>

(frequentist, penalized log-likelihood).



A conceptional Lego toolbox
Model fitting

Gradient based algorithms require the first derivative or score vector.
Within the Bayesian formulation the resulting score vector is

s(ϑ) =
∂ln p(ϑ|y)

∂ϑ
=
∂`(ϑ|y)

∂ϑ
+

K∑
k=1

pk∑
j=1

{
∂ln p(βjk |τ 2

jk )

∂ϑ
+
∂ln p(τ 2

jk )

∂ϑ

}
,

The first order partial derivatives of the log-likelihood for
ϑk = (βk ,γk , τ

2
k )>, can be further fragmented

∂`(ϑ|y)

∂ϑk
=
∂`(ϑ|yi)

∂ηk

∂ηk

∂ϑk
=
∂`(ϑ|yi)

∂θk

∂θk

∂ηk

∂ηk

∂ϑk
,

since θik = h−1
k (ηik (ϑk )).



A conceptional Lego toolbox
Model fitting

Applying, e.g., a Newton-Raphson algorithm additionally requires the
second derivatives

∂2`(ϑ|y)

∂ϑk∂ϑ
>
s

=

(
∂ηs

∂ϑs

)> ∂2`(ϑ|y)

∂ηk∂η
>
s

∂ηk

∂ϑk
+
∂`(ϑ|y)

∂ηk

∂2ηk

∂2ϑk︸ ︷︷ ︸
if k=s

s = 1, . . . ,K .

PM-estimates with iteratively reweighted least squares (IWLS)

z[t]k = η
[t]
k +

(
W[t]

kk

)−1
s[t]k ,

with sk = ∂`(ϑ|y)/∂ηk and weights Wkk = −∂2`(ϑ|y)/∂ηk∂η
>
k .

Depending on the type of algorithm different weights are used, e.g.,
Wkk = E

(
−∂2`(ϑ|y)/∂ηk∂η

>
k

)
.



A conceptional Lego toolbox
Model fitting

MCMC simulation

Metropolis-Hastings based on IWLS proposals:

µj = P−1
j Z′jW(z− η−j) Pj = Z′jWZj +

1
τ 2

j
Kj ,

with working weights

W = diag
(

E
(
− ∂

2`

∂η2
i

))
,

and
γ
[t]
j ∼ N(µj ,P

−1
j ).

Other sampling schemes, e.g., slice sampling, NUTS, t-walk, . . . ?!



A conceptional Lego toolbox
Summary

The following quantities are repeatedly used within candidate
algorithms:

The density function f (y|θ1, . . . ,θK ).

The first order derivatives ∂l(ϑ|y)/∂θk , ∂θk/∂ηk and ∂ηk/∂ϑk .

Second order derivatives ∂2l(ϑ|y)/∂ηk∂η
>
k .

Derivatives for priors, e.g., ln p(γ jk |τ 2
jk ) and ln p(τ 2

jk ).



A conceptional Lego toolbox
Algorithm

A simple generic algorithm for BAMLSS models:

while(eps > ε & i < maxit) {

for(k in 1:K) {

for(j in 1:p) {

Compute η[k]
-j = η[k] − f[k]j .

Obtain new (γ[k]
j , τ 2[k]

j )> = u[k]j (y,η[k]
-j , z

[k]
j ,γ[k]

j , τ 2[k]
j , family, k).

Update η[k].
}

}

Compute new eps

}

Functions u[k]j (·) could either return proposals from a MCMC sampler
or updates from an optimizing algorithm.



R package bamlss

The package is available at

https://R-Forge.R-project.org/projects/BayesR/

In R, simply type

R> install.packages("bamlss",
+ repos = "http://R-Forge.R-project.org")

https://R-Forge.R-project.org/projects/BayesR/


R package bamlss
Building blocks

Formula Family Data

Parser

Transformer

Setup

Engine

Results

Summaries Plotting Selection Prediction

In principle, the setup does not restrict to any specific type of engine
(Bayesian or frequentist).



R package bamlss
Symbolic descriptions

Based on Wilkinson and Rogers (1973) a typical model description in R
has the form

response ∼ x1 + x2.

Using structured additive predictors we need generic descriptors for
smooth/random terms, creating the type of term/basis we want to
incorporate (model frame). The recommended R package mgcv (Wood
2006) has a pretty set up, e.g.

response ∼ x1 + x2 + s(z1) + s(z2, z3)

response ∼ x1 + x2 + s(z1, bs = "ps").



R package bamlss
Symbolic descriptions

In the context of distributional regression we need formula extensions
for multiple parameters. One convenient way to specify, e.g., the
parameters of a normal model is:

list(

response ∼ x1 + x2 + s(z1) + s(z2),

sigma ∼ x1 + x2 + s(z1)

)

A four parameter example:

list(

response ∼ x1 + x2 + s(z1) + s(z2),

sigma2 ∼ x1 + x2 + s(z1),

nu ∼ s(z1),

tau ∼ s(z2)

)



R package bamlss
Symbolic descriptions

Hierarchical structures:

list(

response ∼ x1 + x2 + s(z1) + s(id1),

id1 ∼ x3 + s(z3) + s(id2),

id2 ∼ s(z4),

sigma2 ∼ x1 + x2 + s(z1),

nu ∼ s(z1) + s(id1),

tau ∼ s(z2)

)

Categorical responses:

list(

response ∼ x1 + x2 + s(z1) + s(z2),

∼ x1 + x2 + s(z1) + s(z3)

)



R package bamlss
Input parameters

Parsing input parameters is based on mgcv infrastructures. In addition,
the parser allows to define special user defined terms.

parse.input.bamlss(formula, data = NULL,

family = gaussian, weights = NULL,

subset = NULL, offset = NULL, na.action = na.omit,

contrasts = NULL, knots = NULL, specials = NULL,

reference = NULL, ...)

Creates the model frame, all necessary matrices, to set up a model.
R> f <- list(accel ~ s(times), sigma ~ s(times))
R> pm <- parse.input.bamlss(f, data = mcycle, family = gaussian)
R> names(pm)

[1] "mu" "sigma"

R> names(pm$mu)

[1] "formula" "intercept" "fake.formula" "response"
[5] "pterms" "sterms" "smooth" "sx.smooth"
[9] "X" "response.vec" "hlevel"



R package bamlss
Workflow example

JAGS
R> pm <- transformBUGS(pm)
R> ms <- setupJAGS(pm)
R> so <- samplerJAGS(ms)
R> mo <- resultsJAGS(pm, so)
R> summary(mo)
R> plot(mo)

BayesX
R> f <- list(
+ accel ~ sx(times),
+ sigma ~ sx(times)
+ )
R> pm <- parse.input.bayesr(f, data = mcycle, family = gaussian)
R> pm <- transformBayesX(pm)
R> ms <- setupBayesX(pm)
R> so <- samplerBayesX(ms)
R> mo <- resultsBayesX(pm, so)
R> summary(mo)
R> plot(mo)



R package bamlss
Available building blocks

Type Name

Parser parse.input.bamlss()

Transformer randomize(), transformBUGS(),

transformBayesX(), tranformBayesG()

Setup setupJAGS(), jags2stan()

Engine samplerBayesX(), samplerJAGS(),

samplerSTAN(), samplerBayesG(),

engine_stacker()

Results resultsBayesX(), resultsBUGS(),

resultsBayesG()

If new engines are implemented, one only needs to exchange the
building block functions.



R package bamlss
Available families

Work in progress . . . (+ note that not all families are available for all
implemented engines yet)

BCCG cens cloglog lognormal

beta dagum lognormal2 quant

betazi dirichlet multinomial t

betazi gamma mvn truncgaussian

betazoi gaussian mvt truncgaussian2

binomial gaussian2 negbin weibull

bivlogit gengamma pareto zinb

bivprobit invgaussian poisson zip

Families with ending 2 represent alternative parametrizations.



R package bamlss
Wrapper function

To ease the workflow, a wrapper function for the available engines is
provided:

bamlss(formula, family = gaussian, data = NULL,

knots = NULL, weights = NULL, subset = NULL,

offset = NULL, na.action = na.fail, contrasts = NULL,

engine = c("BayesG", "BayesX", "JAGS", "STAN"),

cores = NULL, combine = TRUE,

n.iter = 12000, thin = 10, burnin = 2000,

seed = NULL, ...)

The function calls xreg() and returns an object of “bamlss” for which
standard extractor and plotting functions are provided:

summary(), plot(), fitted(), residuals(), predict(), coef(),
DIC(), samples(), . . .



Example

Dynamical Statistical Forecast of Alpine Snow Amounts
Reto Stauffer, Jakob W. Messner, Achim Zeileis and Georg J. Mayr

Affected:

Public transport.

Winter tourism.

Outdoor sportsmen.

Residents & infrastructure.

Forecasts needed for:

Risk assessments.

Public warning.

Road/railroad maintenance.

+12h to few days in advance.

Challenges of rain/snow forecasting in complex terrain:

Depends on various scales (global circulation→ micro physics).

Strongly modulated by local orography.

Even high resolution NWP models do not resolve all important
processes.

Minor station density at high altitudes.
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Left panel: Spatial distribution.
Right panel: Station and topographic distribution.
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Basic concept:
Use anomalies to eliminate station dependence

obs− obsclim︸ ︷︷ ︸
Observed anomalies

= β0 + β1 · ( ens− ensclim︸ ︷︷ ︸
Forecast anomalies

) + ε.

Corrected forecast:

ŷ = obsclim + β0 + β1 · (ens− ensclim).

obs: Observations.

obsclim: Climatology of observations.

ens: Ensemble forecasts from an NWP model.

ensclim: Climatology of past ensemble forecasts.

ŷ : Estimated, spatially corrected forecasts.

ε: Statistical (unexplained) error.



Example

Daily precipitation observations 1970 – 2011:



Example

Censored regression model: Latent Gaussian variable y? and observed
response y (square root of daily precipitation observations)

y? ∼ N(µ,σ2),

µ = ηµ, log(σ) = ησ,

y = max(0, y?).

Predictors:

η = β0 + f (yday) + f (alt) + f (lon, lat).

Likelihood:

L(ϑ|y) =
n∏

i=1

f (yi |ϑ,σ, zi)
I(yi>0) · P(yi = 0|zi)

I(yi=0).



Example

R> library("bamlss")

R> load("data/raindata.rda")

R> f <- list(
+ sqrt(obs) ~ s(yday,bs="cc") + s(alt) + s(lon,lat,k=50),
+ sigma ~ s(yday,bs="cc") + s(alt) + s(lon,lat,k=50)
+ )

R> rainmodel <- bamlss(f, data = dat,
+ family = gF(cens, left = 0),
+ method = c("backfitting", "MCMC"),
+ update = "iwls", propose = "iwls",
+ n.iter = 12000, burnin = 2000, thin = 10)

R> summary(rainmodel)



Example

Call:
bamlss(formula = f, family = gF(cens, left = 0), data = dat, ...)

Family: cens
Link function: mu = identity, sigma = log
---

Results for mu:
---
Formula:
sqrt(obs) ~ s(yday, bs = "cc") + s(alt) + s(lon, lat, k = 50)

Parametric coefficients:
Mean Sd 2.5% 50% 97.5% alpha

(Intercept) -0.166456 0.003707 -0.173706 -0.166600 -0.159903 1

Smooth effects variances:
Mean Sd 2.5% 50% 97.5% alpha

s(yday) 4492.16 1794.10 2208.69 4108.18 8846.81 0.999
s(alt) 476.29 183.31 235.11 440.02 965.10 0.999
s(lon,lat) 273.88 41.31 204.93 270.01 367.54 0.997



Example

Results for sigma:
---
Formula:
~s(yday, bs = "cc") + s(alt) + s(lon, lat, k = 50)

Parametric coefficients:
Mean Sd 2.5% 50% 97.5% alpha

(Intercept) 0.973318 0.001221 0.970857 0.973322 0.975730 0.998

Smooth effects variances:
Mean Sd 2.5% 50% 97.5% alpha

s(yday) 506.40 231.64 234.84 460.71 1105.84 0.979
s(alt) 37.26 17.13 16.03 33.18 79.16 0.988
s(lon,lat) 110.74 17.77 82.03 109.02 154.17 0.939

---
DIC = 2.457e+06 N = 845321



Example

R> plot(rainmodel, term = c("s(yday)", "s(alt)"))



Example

R> plot(rainmodel, model = "mu", term = "s(lon,lat)")



Example

R> plot(rainmodel, model = "sigma", term = "s(lon,lat)")



Example

R> p <- predict(rainmodel, model = "mu", newdata = nd, FUN = foo)



Example

Predictions for January 24:

Location P(y > 0|z)

Innsbruck 30.46%

St.Anton 37.40%

Galtür 37.61%

Lienz 24.86%

Sölden 30.38%

Mayrhofen 32.28%

Kitzbühel 38.29%



Thank you!!!
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