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Example of hierarchical data structures

Example of hierarchical data structures
Hedonic regression data for house prices in Austria

Variable of primary interest

house price or log house price

Covariates

• Structural (physical) characteristics, like floor space area,
constructional condition, age etc., and

• neighborhood (locational) characteristics, often on various levels of
aggregation, like the proximity to places of work, the social
composition of the neighborhood etc.
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Example of hierarchical data structures

Four-level hierarchical model

level 1: lnp = f1(area) + · · ·+ fq (age) + vγ + fmunicipal(s1) + ε1

level 2: fmunicipal(s1) = f11 (purchase power) + · · ·+ fp1 (level of education)

+ fdistrict(s2) + ε2

level 3: fdistrict(s2) = f12 (unemployment rate) + fcounty(s3) + ε3

level 4: fcounty(s3) = ε4

The f ’s are possibly nonlinear functions of the covariates.

This is an example of hierarchical structured additive regression models.
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Example of hierarchical data structures
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Structured additive regression models

Structured additive regression models

• Distributional and structural assumptions, given covariates and
parameters, are based on Generalized Linear Models

• E(y |x,v) = h(η) with structured additive predictor

η = f1(x1) + . . .+ fp(xp) + v′γ

In the following we only consider additive models with

y = η + ε ε ∼ N (0, σ2)

• v′γ parametric part of the predictor

• xj continuous covariate, time scale, location or unit-or cluster index

• xj may be two (even higher) dimensional for modeling interactions

• fj one-/two (even higher) dimensional, not necessarily continuous
functions
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Structured additive regression models

Overview: Modeling the functions fj

fj (xj ) = f (x) xj = x nonlinear effect of x

fj (xj ) = fspat (s) xj = s spatial effect of location variable
s = (1, 2, . . . ,S)′

fj (xj ) = x2 f (x1) xj = (x1, x2) interaction effect between x1 and
x2

fj (xj ) = f1|2(x1, x2) xj = (x1, x2) nonlinear interaction between x1
and x2

fj (xj ) = βiu xj = (u, i) individual specific random effect
with u = (1, 2, . . . ,U )′
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Structured additive regression models

General form

• Vector of function evaluations fj = (f1j , . . . , fnj )
′ can be written as:

fj = Zjβj

with Zj as the design matrix, where βj are unknown regression
coefficients

• Form of Zj only depends on the functional type chosen

• Penalized least squares:

PLS(β,γ) = ||y − η||2 + λ1β
′
1K1β1 + . . .+ λpβ

′
pKpβp
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Structured additive regression models

General form

• Prior for β in the corresponding Bayesian approach

p(βj |τ
2
j ) ∝

(
1

2πτ2j

)rk(Kj )/2

exp

(
− 1

2τ2j
β′jKjβj

)
I (Aβj = 0)

τ2j variance parameter, governs the smoothness of fj , relation to
frequentists by λj = σ2/τ2j

• Aβj = 0 is an identifiability constraint, e.g. A = (1, . . . , 1)′ such that
the β‘s sum up to zero

• Structure of Kj also depends on the type of covariates and on
assumptions about smoothness of fj
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Structured additive regression models

General form

• Basis functions Bmj (·) in

fj (xj ) =

Mj∑
m=1

βmj Bmj (xj )

may include e.g. a polynomial, B-spline, Matérn basis (one or more
dimensional), etc.
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Structured additive regression models
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Structured additive regression models

0.0 0.2 0.4 0.6 0.8 1.0

-6
-4

-2
0

2
4

6

xj

B
m
j(
x
j)

12



Hierarchical formulation and MCMC inference

Hierarchical formulation and MCMC inference

Multilevel/Hierarchical structured additive model with k hierarchies within
a first stage term Zjβj may be written as

y = Z1β1 + . . .+ Zpβp + vγ + ε

βj = Zj11βj11
+ . . .+ Zjp1βjp1

+ vjγj + uj

...

βj ,j1,...,jk
= Zj ,j1,...,jk

βj ,j1,...,jk
+ . . . + Zj ,j1,...,jk

βj ,j1,...,jk
+ vj ,j1,...,jk

γj ,j1,...,jk
+ uj ,j1,...,jk

βj ,j1,...,jk
= ηj ,j1,...,jk

+ uj ,j1,...,jk

with ε ∼ N (0, σ2W−1) and uj ,j1,...,jk ∼ N (0, τ2j ,j1,...,jk K
−1
j ,j1,...,jk

)
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Hierarchical formulation and MCMC inference

The full conditionals for the regression coefficients are multivariate
Gaussian. Starting from a first level view, the precision matrix Σβj

and
mean µβj

are given by

Σβj
= σ2

(
Z′jWZj +

σ2

τ2j
Kj

)−1

µβj
= Σβj

(
1

σ2
Z′jWr +

1

τ2j
ηβj

)
and for the higher levels

Σβj ,j1,...,jk
= τ2j ,j1,...,jk−1

(
Z′j ,j1,...,jk Zj ,j1,...,jk +

τ2j ,j1,...,jk−1

τ2j ,j1,...,jk
Kj ,j1,...,jk

)−1

µβj ,j1,...,jk
= Σβj ,j1,...,jk

(
1

τ2j ,j1,...,jk−1

Z′j ,j1,...,jk r +
1

τ2j ,j1,...,jk
ηβj ,j1,...,jk

)
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Hierarchical formulation and MCMC inference

Properties

• Reduced complexity in higher stages of the hierarchy:

• Number of “observations” in the higher levels is much less than the
actual number of observations n.

• Full conditionals for regression coefficients are Gaussian regardless of the
response distribution in the first level of the hierarchy.

• Sparsity
Design matrices and posterior precision matrices are typically sparse
(after reordering of parameters).

• Number of different observations smaller than sample size
Typically the number of different observations xj(1j ), . . . , xj(nj ) in Zj is
much smaller than the total number n of observations, i.e. nj � n.
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Hierarchical formulation and MCMC inference

• Denote by z
(2)

(1) < z
(2)

(2) < · · · < z
(2)

(m) the m ordered different observations

of z (2).

• Compute the index vector ind with elements ind[i ] ∈ {1, . . . ,m}
denoting the category of the i-th observation, i.e. if z

(2)
i = z

(2)

(j) then

ind[i ] = j .

• Decompose the design matrix in Z = DPZ̃ where

• Z̃ is the m ×K reduced design matrix for the different and sorted

observations z
(2)
(1)
, . . . , z

(2)
(m)

, i.e. Z̃[s, k ] = Bk

(
z
(2)
(s)

)
, s = 1, . . . ,m,

k = 1, . . . ,K ,

• P is a n ×m permutation matrix, which reverts the sorting, i.e.
P[i , s] = I (ind(i) = s).

• For the vector of function evaluations we obtain f = Zβ = DPZ̃β.
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Hierarchical formulation and MCMC inference

We get

Z′WZ = Z̃′P′D′WDPZ̃ = Z̃′W̃Z̃,

where
W̃ = P′D′WDP = diag(w̃1, . . . , w̃m)

and the “reduced” weights w̃s , are given by

w̃s =
∑

i : ind [i]=s

(
(z

(1)
i

)2
wi .

The weights w̃s can be computed by first initializing w̃s = 0 followed by a

simple loop: For i = 1, . . . ,n add
(

(z
(1)
i

)2
wi to w̃ind [i].
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Hierarchical formulation and MCMC inference

For Z′Wr we obtain

Z′Wr = Z̃′P′D′Wr = Z̃′r̃,

where the m × 1 vector r̃ = (r̃1, . . . , r̃m)′ of “reduced” partial residuals is
given by

r̃s =
∑

i : ind [i]=s

z
(1)
i wi ri .

The r̃s are computed by first initializing r̃s = 0 followed by the loop: For
i = 1, . . . ,n add z

(1)
i wi ri to r̃ind(i).
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Alternative sampling scheme based on transformed parametrization

Alternative sampling scheme based on transformed
parametrization

(i.) Cholesky decomposition RR′ of Z′WZ

(ii.) Singular value decomposition QSQ′ = R−1K(R′)−1,
S = diag(s1, . . . , sM ): Eigenvalues of (R′)−1K(R′)−1

Q: Orthogonalmatrix

(iii.) Then set transformed design matrix Z̃ = Z(R′)−1Q such that
f = Zβ = Z̃β̃ (β = (R′)−1Qβ̃)

(iv.) and the resulting penalty is now given by

β′Kβ = β̃
′
Q′(R′)−1K(R′)−1Qβ̃ = β̃

′
Sβ̃
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Alternative sampling scheme based on transformed parametrization

Mean and precision matrix are now given by

µβ̃mj
=

1

1 + λj smj
· umj m = 1, . . . ,Mj

where λj = σ2/τ2j and umj is the m-th element of the vector

uj = Z̃jW (y − η + fj ), and entries of the corresponding diagonal precision
matrix

Σβ̃j
[m,m] =

σ2

1 + λj smj
m = 1, . . . ,Mj
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Alternative sampling scheme based on transformed parametrization
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Alternative sampling scheme based on transformed parametrization

MCMC sampling scheme

for t = 1, . . . ,T {
1. for j = 1, . . . , p {

1.1 β̃
(t+1)
j | · ∼ N

(
µ
(t)

β̃j
,Σ

(t)

β̃j

)
1.2 if level within β̃j set y∗ = β̃

(t+1)
j and repeat steps 1-4

1.3 τ2j
(t+1)| · ∼ IG

(
a +

rk(Kj )

2
, b + 1

2
β̃′j

(t+1)
Kj β̃

(t+1)
j

)
1.4 update η
}

2. γ̃(t+1))| · ∼ N
(
µ

(t)
γ̃ ,Σ

(t)
γ̃

)
3. update η

4. σ2(t+1)| · ∼ IG
(

a + n
2
, b + 1

2
(y − η(t+1))′(y − η(t+1))

)
}
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Results: Hedonic regression data for house prices

Results: Hedonic regression data for house prices

Structural continuous covariates
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Results: Hedonic regression data for house prices

Structural continuous covariates
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Results: Hedonic regression data for house prices

Neighborhood effects
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Results: Hedonic regression data for house prices

Neighborhood effects
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Results: Hedonic regression data for house prices

Neighborhood effects
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Results: Hedonic regression data for house prices
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Thank you!!!
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