Beta Regression in R

Achim Zeileis, Francisco Cribari-Neto, Bettina Grün

http://eeecon.uibk.ac.at/~zeileis/
Overview

- Motivation
- Beta regression
- Implementation in R
- Illustration: Reading accuracy
- Extensions: Partitions and mixtures
- Summary
Motivation

Goal: Model dependent variable $y \in (0, 1)$, e.g., rates, proportions, concentrations etc.

Common approach: Model transformed variable \tilde{y} by a linear model, e.g., $\tilde{y} = \text{logit}(y)$ or $\tilde{y} = \text{probit}(y)$ etc.

Disadvantages:
- Model for mean of \tilde{y}, not mean of y (Jensen’s inequality).
- Data typically heteroskedastic.

Idea: Model y directly using suitable parametric family of distributions plus link function.

Specifically: Maximum likelihood regression model using alternative parametrization of beta distribution (Ferrari & Cribari-Neto 2004).
Beta regression

Beta distribution: Continuous distribution for $0 < y < 1$, typically specified by two shape parameters $p, q > 0$.

Alternatively: Use mean $\mu = p/(p + q)$ and precision $\phi = p + q$.

Probability density function:

$$f(y) = \frac{\Gamma(p+q)}{\Gamma(p) \Gamma(q)} y^{p-1} (1 - y)^{q-1}$$

$$= \frac{\Gamma(\phi)}{\Gamma(\mu \phi) \Gamma((1 - \mu) \phi)} y^{\mu \phi - 1} (1 - y)^{(1-\mu) \phi - 1}$$

where $\Gamma(\cdot)$ is the gamma function.

Properties: Flexible shape. Mean $E(y) = \mu$ and

$$\text{Var}(y) = \frac{\mu (1 - \mu)}{1 + \phi}.$$
Beta regression

\(\phi = 5 \)

\(\phi = 100 \)

\(y \)

Density

\(0.10 \), \(0.25 \), \(0.50 \), \(0.75 \), \(0.90 \)
Beta regression

Regression model:

- Observations \(i = 1, \ldots, n \) of dependent variable \(y_i \).
- Link parameters \(\mu_i \) and \(\phi_i \) to sets of regressor \(x_i \) and \(z_i \).
- Use link functions \(g_1 \) (logit, probit, \ldots) and \(g_2 \) (log, identity, \ldots).

\[
\begin{align*}
g_1(\mu_i) &= x_i^\top \beta, \\
g_2(\phi_i) &= z_i^\top \gamma.
\end{align*}
\]

Inference:

- Coefficients \(\beta \) and \(\gamma \) are estimated by maximum likelihood.
- The usual central limit theorem holds with associated asymptotic tests (likelihood ratio, Wald, score/LM).
Implementation in R

Model fitting:
- Package `betareg` with main model fitting function `betareg()`.
- Interface and fitted models are designed to be similar to `glm()`.
- Model specification via formula plus data.
- Two part formula, e.g., \(y \sim x_1 + x_2 + x_3 \mid z_1 + z_2 \).
- Log-likelihood is maximized numerically via `optim()`.
- Extractors: `coef()`, `vcov()`, `residuals()`, `logLik()`, ...

Inference:
- Base methods: `summary()`, `AIC()`, `confint()`.
- Methods from `lmtest` and `car`: `lrtest()`, `waldtest()`, `coeftest()`, `linearHypothesis()`.
- Moreover: Multiple testing via `multcomp` and structural change tests via `strucchange`.
Illustration: Reading accuracy

- 44 Australian primary school children.
- Dependent variable: Score of test for reading accuracy.
- Regressors: Indicator dyslexia (yes/no), nonverbal iq score.

Analysis:
- OLS for transformed data leads to non-significant effects.
- OLS residuals are heteroskedastic.
- Beta regression captures heteroskedasticity and shows significant effects.
Illustration: Reading accuracy

R> data("ReadingSkills", package = "betareg")
R> rs_ols <- lm(qlogis(accuracy) ~ dyslexia * iq, + data = ReadingSkills)
R> coeftest(rs_ols)

t test of coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.60107 0.22586 7.0888 1.411e-08 ***
dyslexia -1.20563 0.22586 -5.3380 4.011e-06 ***
iq 0.35945 0.22548 1.5941 0.11878
dyslexia:iq -0.42286 0.22548 -1.8754 0.06805 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> bptest(rs_ols)

studentized Breusch-Pagan test

data: rs_ols
BP = 21.692, df = 3, p-value = 7.56e-05
Illustration: Reading accuracy

R> rs_beta <- betareg(accuracy ~ dyslexia * iq | dyslexia + iq, + data = ReadingSkills)
R> coeftest(rs_beta)

z test of coefficients:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | 1.12323 | 0.14283 | 7.8638 | 3.725e-15 *** |
| dyslexia | -0.74165 | 0.14275 | -5.1952 | 2.045e-07 *** |
| iq | 0.48637 | 0.13315 | 3.6528 | 0.0002594 *** |
| dyslexia:iq| -0.58126 | 0.13269 | -4.3805 | 1.184e-05 *** |
| (phi)_(Intercept) | 3.30443 | 0.22274 | 14.8353 | < 2.2e-16 *** |
| (phi)_dyslexia | 1.74656 | 0.26232 | 6.6582 | 2.772e-11 *** |
| (phi)_iq | 1.22907 | 0.26720 | 4.5998 | 4.228e-06 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Illustration: Reading accuracy

- control
- dyslexic
- betareg
- lm

accuracy vs iq
Extensions: Partitions and mixtures

So far: Reuse standard inference methods for fitted model objects.

Now: Reuse fitting functions in more complex models.

Model-based recursive partitioning: Package party.
- Idea: Recursively split sample with respect to available variables.
- Aim: Maximize partitioned likelihood.
- Fit: One model per node of the resulting tree.

Latent class regression, mixture models: Package flexmix.
- Idea: Capture unobserved heterogeneity by finite mixtures of regressions.
- Aim: Maximize weighted likelihood with k components.
- Fit: Weighted combination of k models.
Beta regression trees

Partitioning variables: dyslexia and further random noise variables.

```R
R> set.seed(1071)
R> ReadingSkills$x1 <- rnorm(nrow(ReadingSkills))
R> ReadingSkills$x2 <- runif(nrow(ReadingSkills))
R> ReadingSkills$x3 <- factor(rnorm(nrow(ReadingSkills)) > 0)
```

Fit beta regression tree: In each node accuracy’s mean and precision depends on iq, partitioning is done by dyslexia and the noise variables x1, x2, x3.

```R
R> rs_tree <- betatree(accuracy ~ iq | iq,
+                        ~ dyslexia + x1 + x2 + x3,
+                        data = ReadingSkills, minsplit = 10)
R> plot(rs_tree)
```

Result: Only relevant regressor dyslexia is chosen for splitting.
Beta regression trees

dyslexia
$p < 0.001$

Node 2 (n = 25)

Node 3 (n = 19)
Latent class beta regression

Setup:

- No dyslexia information available.
- Look for $k = 3$ clusters: Two different relationships of type $\text{accuracy} \sim \text{iq}$, plus component for ideal score of 0.99.

Fit beta mixture regression:

R> rs_mix <- betamix(accuracy ~ iq, data = ReadingSkills, k = 3,
+ nstart = 10, extra_components = extraComponent(
+ type = "uniform", coef = 0.99, delta = 0.01))

Result:

- Dyslexic children separated fairly well.
- Other children are captured by mixture of two components: ideal reading scores, and strong dependence on iq score.
Latent class beta regression

![Graph showing a scatter plot with two sets of data points. The x-axis represents IQ and the y-axis represents accuracy. The data points are scattered across the graph, indicating a relationship between IQ and accuracy.](image)
Latent class beta regression

![Graph showing the relationship between IQ and accuracy.](image-url)
Latent class beta regression

![Graph showing accuracy vs IQ with different colored points and lines representing different classes.](image)
Latent class beta regression

![Graph showing Latent class beta regression with two curves and data points on the x-axis (IQ) and y-axis (Accuracy).]
Summary

Beta regression and extensions:
- Flexible regression model for proportions, rates, concentrations.
- Can capture skewness and heteroskedasticity.
- R implementation `betareg`, similar to `glm()`.
- Due to design, standard inference methods can be reused easily.
- Fitting functions can be plugged into more complex fitters.
- Convenience interfaces available for: Model-based partitioning, finite mixture models.
References

